Browse > Article
http://dx.doi.org/10.12989/acc.2016.4.2.071

Fracture behavior and pore structure of concrete with metakaolin  

Akcay, Burcu (Department of Civil Engineering, University of Kocaeli)
Sengul, Cengiz (Civil Engineering Faculty, Istanbul Technical University)
Tasdemir, Mehmet ali (Civil Engineering Faculty, Istanbul Technical University)
Publication Information
Advances in concrete construction / v.4, no.2, 2016 , pp. 71-88 More about this Journal
Abstract
Metakaolin, a dehydroxylated product of the mineral kaolinite, is one of the most valuable admixtures for high-performance concrete applications, including constructing reinforced concrete bridges and impact- and fire-resistant structures. Concretes produced using metakaolin become more homogeneous and denser compared to normal-strength concrete. Yet, these changes cause a change of volume throughout hardening, and increase the brittleness of hardened concrete significantly. In order to examine how the use of metakaolin affects the fracture and mechanical behavior of high-performance concrete we produced concretes using a range of water to binder ratio (0.42, 0.35 and 0.28) at three different weight fractions of metakaolin replacement (8%, 16% and 24%). The results showed that the rigidity of concretes increased with using 8% and 16% metakaolin, while it decreased in all series with 24% of metakaolin replacement. Similar effect has also been observed for other mechanical properties. While the peak loads in load-displacement curves of concretes decreased significantly with increasing water to binder ratio, this effect have been found to be diminished by using metakaolin. Pore structure analysis through mercury intrusion porosimetry test showed that the addition of metakaolin decreased the critical pore size of paste phases of concrete, and increasing the amount of metakaolin reduced the total porosity for the specimens with low water to binder ratios in particular. To determine the optimal values of water to binder ratio and metakaolin content in producing high-strength and high-performance concrete we applied a multi-objective optimization, where several responses were simultaneously assessed to find the best solution for each parameter.
Keywords
Metakaolin; brittleness; fracture energy; pore structure; mechanical strength; optimization;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Khatib, J.M., Sabir, B.B. and Wild, S. (1996), "Some properties of metakaolin paste and mortar", Proceedings of the International Congress, Concrete in the Service of Mankind-Concrete for Environmental Enhancement and Protection, Theme 6-Waste Materials and Alternative Product, University of Dundee (Dhir RK and Dyer DT (eds)) London E&FN Spon, pp. 637-644.
2 Madandoust, R. and Mousavi, S.Y. (2012), "Fresh and hardened properties of self-compacting concrete containing metakaolin", Constr. Build. Mater., 35, 752-760.   DOI
3 Moukwa, M., Lewis, B.G., Shah, S.P. and Ouyang, C. (1993), "Effects of clays on fracture properties of cement-based materials", Cement Concrete Res., 23(3), 711-723.   DOI
4 Murat, M. (1983), "Hydration reaction and hardening of calcined clays and related minerals", Cement Concrete Res., 13(2), 259-266.   DOI
5 Poon, C.S., Kou, S.C. and Lam, L. (2006), "Compressive strength, chloride diffusivity and pore structure of high performance metakaolin and silica fume concrete", Constr. Build. Mater., 20(10), 858-865.   DOI
6 Qian, X. and Li, Z. (2001), "The relationships between stress and strain for high-performance concrete with metakaolin", Cement Concrete Res., 31(11), 1607-1611.   DOI
7 Ramezanianpour, A.A. and Bahrami Jovein, H. (2012), "Influence of metakaolin as supplementary cementing material on strength and durability of concretes", Constr. Build. Mater., 30, 470-479.   DOI
8 RILEM Technical Committee 50-FMC (1985), "Draft Recommendation: Determination of the fracture energy of mortar and concrete by means of three-point bend test on notched beams", Mater. Struct., 18(4), 287-291.   DOI
9 Sfikas, I.P., Badogiannis, E.G. and Trezos, K.G. (2014), "Rheology and mechanical characteristics of self-compacting concrete mixtures containing metakaolin", Constr. Build. Mater., 64, 121-129.   DOI
10 Abdul Razak, H. and Wong, H.S. (2005), "Strength estimation model for high-strength concrete incorporating metakaolin and silica fume", Cement Concrete Res., 35(4), 688-695.   DOI
11 Akcay, B. and Tasdemir, M.A. (2009), "Optimisation of using lightweight aggregates in mitigating autogenous deformation of concrete", Constr. Build. Mater., 23(1), 353-363.   DOI
12 Akcay, B. and Tasdemir, M.A. (2015), "Investigation of microstructure properties and early age behavior of cementitious materials containing metakaolin", Proceedings of the 10th International Conference on Mechanics and Physics of Creep, Shrinkage, and Durability of Concrete and Concrete Structures (CONCREEP 10), Vienna, 2015 (Hellmich C, Kolleger J and Pichler B (eds)), pp 1468-1475.
13 Brooks, J.J., Megat Johari, M.A. and Mazloom, M. (2000), "Effect of admixtures on the setting times of high-strength concrete", Cement Concrete Compos., 22(4), 293-301.   DOI
14 Badogiannis, E., Kakali, G., Dimopoulou, G., Chaniotakis, E. and Tsivilis, S. (2005), "Metakaolin as a main cement constituent. Exploitation of poor Greek kaolins", Cement Concrete Compos., 27(2), 197-203.   DOI
15 Badogiannis, E., Papadakis, V.G., Chaniotakis, E. and Tsivilis, S. (2004), "Exploitation of poor Greek kaolins: strength development of metakaolin concrete and evaluation by means of k-value", Cement Concrete Res., 34(6), 1035-1041.   DOI
16 Brooks, J.J. and Megat Johari, M.A. (2001), "Effect of metakaolin on creep and shrinkage of concrete", Cement Concrete Compos., 23(6), 495-502.   DOI
17 Caldarone, M.A., Gruber, K.A. and Burg, R.G. (1994), "High reactivity metakaolin (HRM): a new generation mineral admixture for high performance concrete", Concrete Int., 16(11), 37-40.
18 Curcio, F., DeAngelis, B.A. and Pagliolico, S. (1998), "Metakaolin as a pozzolanic microfiller for high-performance mortars", Cement Concrete Res., 28(6), 803-809.   DOI
19 Cassagnabere, F., Mouret, M., Escadeillas, G., Broilliard, P. and Bertrand, A. (2010), "Metakaolin, a solution for the precast industry to limit the clinker content in concrete: Mechanical aspects", Constr. Build. Mater., 24(7), 1109-1118.   DOI
20 Courard, L., Darimont, A., Schouterden, M., Ferauche, F., Willem, X. and Degeimbre R. (2003), "Durability of mortars modified with metakaolin", Cement Concrete Res., 33(9), 1473-1479.   DOI
21 Asbridge, A.H., Walters, G.V. and Jones, T.R. (1994), "Ternary blended concretes OPC/ggbfs/metakaolin", Concrete Across Borders Denmark, 941-947.
22 Derringer, G. and Suich, R. (1980), "Simultaneous optimization of several response variables", J. Qual. Tech., 12(4), 214-219.   DOI
23 Siddique, R. and Klaus, J. (2009), "Influence of metakaolin on the properties of mortar and concrete: a review", Appl. Clay Sci., 43(3-4), 392-400.   DOI
24 Vejmelkova, S., Pavlikova, M., Keppert, M., Kersner, Z., Rovnanikova, P., Ondracek, M., Sedlmajer, M. and Cerny, R. (2010), "High performance concrete with Czech metakaolin: Experimental analysis of strength, toughness and durability characteristics", Constr. Build. Mater., 24(8), 1404-1411.   DOI
25 Duan, P., Shui, Z., Chen, W. and Shen, C. (2013), "Effects of metakaolin, silica fume and slag on pore structure, interfacial transition zone and compressive strength of concrete", Constr. Build. Mater., 44, 1-6.   DOI
26 Dubey, A. and Banthia, N. (1998), "Influence of high-reactivity metakaolin and silica fume on the flexural toughness of high-performance steel fiber-reinforced concrete", ACI Mater. J., 95(3), 284-292.
27 Frias, M. and Cabrera, J. (2001), "Influence of MK on the reaction in MK/lime and MK-blended cement systems at $20^{\circ}C$", Cement Concrete Res., 31(4), 519-527.   DOI
28 Guneyisi, E., Gesoglu, M., Algin, Z. and Mermerdas, K. (2014), "Optimization of concrete mixture with hybrid blends of metakaolin and fly ash using response surface method", Compos. Part B: Eng., 60, 707-715.   DOI
29 Frias, M., Sanches de Rojas, M.I. and Cabrera, J. (2000), "The effect that the pozzolanic reaction of metakaolin has on the heat evaluation in metakaolin-cement mortars", Cement Concrete Res., 30(2), 209-216.   DOI
30 Guneyisi, E., Gesoglu, M. and Mermerdas, K. (2008), "Improving strength, drying shrinkage, and pore structure of concrete using metakaolin", Mater. Struct., 41(5), 937-949.   DOI
31 Hassan, A.A.A., Lachemi, M. and Hossain, K.M.A. (2012), "Effect of metakaolin and silica fume on the durability of self-consolidating concrete", Cement Concrete Compos., 34(6), 801-807.   DOI
32 Hillerborg, A., Modeer, M. and Peterson, P.E. (1976), "Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements", Cement Concrete Res., 6(6), 773-782.   DOI
33 Ding, J.T. and Li, Z. (2002), "Effects of metakaolin and silica fume on properties of concrete", ACI Mater. J., 99(4), 393-398.