• Title/Summary/Keyword: Energy improvement

Search Result 3,496, Processing Time 0.03 seconds

A Study on Energy Saving and Safety Improvement through IoT Sensor Monitoring in Smart Factory (스마트공장의 IoT 센서 모니터링을 통한 에너지절감 및 안전성 향상 연구)

  • Woohyoung Choi;Incheol Kang;Changsoo Kim
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.1
    • /
    • pp.117-127
    • /
    • 2024
  • Purpose: The purpose is to conduct basic research to save energy and improve the safety of manufacturing plant infrastructure by comprehensively monitoring energy management, temperature, humidity, dust and gas, air quality, and machine operation status in small and medium-sized manufacturing plants. Method: To this end, energy-related data and environmental information were collected in real time through digital power meters and IoT sensors, and research was conducted to disseminate and respond to situations for energy saving through monitoring and analysis based on the collected information. Result: We presented an application plan that takes into account energy management, cost reduction, and safety improvement, which are key indicators of ESG management activities. Conclusion: This study utilized various sensor devices and related devices in a smart factory as a practical case study in a company. Based on the information collected through research, a basic system for energy saving and safety improvement was presented.

Energy-Efficiency and Transmission Strategy Selection in Cooperative Wireless Sensor Networks

  • Zhang, Yanbing;Dai, Huaiyu
    • Journal of Communications and Networks
    • /
    • v.9 no.4
    • /
    • pp.473-481
    • /
    • 2007
  • Energy efficiency is one of the most critical concerns for wireless sensor networks. By allowing sensor nodes in close proximity to cooperate in transmission to form a virtual multiple-input multiple-output(MIMO) system, recent progress in wireless MIMO communications can be exploited to boost the system throughput, or equivalently reduce the energy consumption for the same throughput and BER target. However, these cooperative transmission strategies may incur additional energy cost and system overhead. In this paper, assuming that data collectors are equipped with antenna arrays and superior processing capability, energy efficiency of relevant traditional and cooperative transmission strategies: Single-input-multiple-output(SIMO), space-time block coding(STBC), and spatial multiplexing(SM) are studied. Analysis in the wideband regime reveals that, while receive diversity introduces significant improvement in both energy efficiency and spectral efficiency, further improvement due to the transmit diversity of STBC is limited, as opposed to the superiority of the SM scheme especially for non-trivial spectral efficiency. These observations are further confirmed in our analysis of more realistic systems with limited bandwidth, finite constellation sizes, and a target error rate. Based on this analysis, general guidelines are presented for optimal transmission strategy selection in system level and link level, aiming at minimum energy consumption while meeting different requirements. The proposed selection rules, especially those based on system-level metrics, are easy to implement for sensor applications. The framework provided here may also be readily extended to other scenarios or applications.

Report of 2050 Energy Technology Perspectives 2015 and Activities on IEA/ECERC Delegation of Korea (2050 에너지기술전망 (2015판) 및 국제에너지기구 활동 보고)

  • Bae, Choongsik
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.279-282
    • /
    • 2015
  • Energy Technology Perspectives (ETP) has provided the current status of energy system, technology developments and external events that have changed ETP scenario since 2006. The three scenarios are presented in four different fields (power generation, transport, industry, building). Energy efficiency improvement of energy system and the new system that can solve the increasing energy demand and the emissions are introduced. The activities on IEA/ECERC delegation of Korea will be also reported in this presentation.

  • PDF

A Study on the Improvement of Disaster Relief Aid (재해구호물자 개선에 관한 연구)

  • Park, Sang Hyun;Kim, Chan-O
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.2
    • /
    • pp.138-144
    • /
    • 2018
  • Disaster relief goods are those that help disaster victims to carry on ordinary life in a disaster. Along with the improvement of national economic level and raise of people's standard of living and diversified lifestyles, demands for relief goods in a disaster are also being diversified. In step with frequent and rather large-scale occurrence of disasters, diversity of related goods for disaster relief is likely to be needed ever more in the future, while more assistance to disaster victims is required from the aspect of securing their normal daily lives. To this end, the study conducted comparative analysis of how Korea, the US and Japan managed disaster relief goods and also examined, analyzed the opinions regarding the betterment of relief goods among disaster victims and ordinary people and civil servants in charge. Based on this, the study suggested the improvement draft for disaster relief goods, the point of which was to minimize disaster relief goods commonly prepared by the central government with goods that may assist victims' lives in shelters, while local governments may prepare relief goods appropriately according to actual situation.

Study on Application of Shaft Box type Balcony for Improvement of Ventilation Performance in Apartment (공동주택의 환기성능 개선을 위한 Shaft Box형 발코니의 적용성 검토)

  • Roh, Ji-Woong;Kim, Gon
    • KIEAE Journal
    • /
    • v.7 no.6
    • /
    • pp.3-8
    • /
    • 2007
  • Recently, because of the continuous rise of international oil price, energy saving is strongly demanding. So, Ecological technics of architecture such as use of natural energy have been actively explored in the field of building. In the method of utilizing natural energy, the key point is to saving energy effectively as not lowering the comfort of indoor environment, various systems investigated. Many papers about double skin facade system have been reported, it is announced broadly that the system is very effective in improvement of natural ventilation and indoor thermal environment, and also protecting outdoor sound. The shaft box facade is a special form of box window construction. It consists of a system of box windows with continuous vertical shafts that extend over a number of stories to create a stack effect. The facade layout consists of an alternation of box windows and vertical shaft segments. This research investigated the natural ventilation performance of shaft box type balcony which conform the shaft box type double skin to the exiting balcony construction. First, analyzed various types of exiting apartments, proto-type was decided. By using virtual environment Program, modeling the proto-type, compared the contribution of air temperature and the effect of outdoor air cooling. by this research, we confirmed that shaft box type balcony had many possibility for improvement of indoor environment.

A Study on Effective Green Technology in Relation to the Energy Performance Improvement of Existing Architectural Structures (기존건축물 에너지성능 개선시 효과적인 녹색기술 연구)

  • Kim, Dae-Won;Kim, Young-Il;Chung, Kwang-Seop
    • Journal of Energy Engineering
    • /
    • v.21 no.3
    • /
    • pp.272-279
    • /
    • 2012
  • The emission quota of 26.9% was allocated to the architectural sector according to the greenhouse gas(GHG) emission reduction goal of the government. It has become inevitable to change the architectural structures in a low-energy consumption and sustainable manner for new and existing house. The introduction of various legal systems and deregulation have been attempted to promote the low carbon emission and sustainable energy conversion. Although overall emission reduction goal has been set for 6.7 million units of existing houses, there has been a lack of standards and directions for the emission reduction measures. This study was intended to present the most economic and effective green technology improvement measures based on the investigation into the current conditions through direct visit to the selected architectural structures and the repeated simulation of relevant technical elements.

IAQ improvement effect analysis in Dynamic Breathing Building(DBB) (숨쉬는 벽체를 적용한 건물에서의 실내공기질(IAQ) 개선 효과 분석)

  • Park, Yong-Dai;Lee, Jin-Sook;Kang, Eun-Chul;Lee, Euy-Joon
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.748-753
    • /
    • 2008
  • In modern buildings, the air-tightness and insulation for energy saving resulted in degradation of Indoor Air Quality(IAQ). It has brought out new diseases such as New Building Syndrome(NBS) and Sick Building Syndrome(SBS) to the tenants of such buildings. As a result, researches on the Dynamic Breathing Building(DBB) are being undertaken to minimize energy loss as well as to improve IAQ. DBB is a state-of-the-art technology to build channels inside the wall so that air migrates between indoor and outdoor, which improves insulation performance and IAQ. This study attempts to evaluate the improvement of DBB employed in real buildings. As analyzing tools, IAQ improvement and particle degradation while were evaluated while the required indoor ventilation rate was satisfied. DBB were installed in the twin test cells at Korea Institute of Energy Research(KIER). From the test, IAQ was compared with outdoor air base on the concentration of particle matter(PM10). As a results, the concentration of particle dust (PM10) within the breathing walls was reduced by 80% at 0.7 ACH, 67% at 2 ACH, 63% at 3 ACH respectively. As ACH is higher, Dnamic Isulation(DI) and normal wall permit more PM10 particles being infiltrated.

  • PDF

Improvement of Switching Speed of a 600-V Nonpunch-Through Insulated Gate Bipolar Transistor Using Fast Neutron Irradiation

  • Baek, Ha Ni;Sun, Gwang Min;Kim, Ji suck;Hoang, Sy Minh Tuan;Jin, Mi Eun;Ahn, Sung Ho
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.209-215
    • /
    • 2017
  • Fast neutron irradiation was used to improve the switching speed of a 600-V nonpunch-through insulated gate bipolar transistor. Fast neutron irradiation was carried out at 30-MeV energy in doses of $1{\times}10^8n/cm^2$, $1{\times}10^9n/cm^2$, $1{\times}10^{10}n/cm^2$, and $1{\times}10^{11}n/cm^2$. Electrical characteristics such as current-voltage, forward on-state voltage drop, and switching speed of the device were analyzed and compared with those prior to irradiation. The on-state voltage drop of the initial devices prior to irradiation was 2.08 V, which increased to 2.10 V, 2.20 V, 2.3 V, and 2.4 V, respectively, depending on the irradiation dose. This effect arises because of the lattice defects generated by the fast neutrons. In particular, the turnoff delay time was reduced to 92 nanoseconds, 45% of that prior to irradiation, which means there is a substantial improvement in the switching speed of the device.

A Study on Remodeling for Building Performance Improvement (건물성능개선을 위한 리모델링에 관한 연구)

  • 김남효
    • Korean Institute of Interior Design Journal
    • /
    • no.25
    • /
    • pp.42-48
    • /
    • 2000
  • The building remodeling is providing a lot of solutions - structural, aesthetic, environmental, and energy performance improvement - in improving buildings performance and environment. The remodelings influences on our society are resource conservation, environmental conservation, expansion of construction market, and creation of new employment. The three principal remodeler groups involved in this building remodeling are general construction contractors, interior architecture contractors, and ESCO (Energy Service Company). Having a representative character, this study classifies remodeling methods into five types: structural remodeling, spatial remodeling, exterior remodeling, environment-friendly remodeling, and ecological remodeling.

  • PDF