• Title/Summary/Keyword: Energy generator

Search Result 1,837, Processing Time 0.034 seconds

Establishment of the Monoenergetic Fluorescent X-ray Radiation Fields (교정용 단일에너지 형광 X-선장의 제작)

  • Kim, Jang-Lyul;Kim, Bong-Hwan;Chang, Si-Young;Lee, Jae-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.23 no.1
    • /
    • pp.33-47
    • /
    • 1998
  • Using a combination of an X-ray generator Installed in radiation calibration laboratory of Korea Atomic Energy Research Institute (KAERI) and a series of 8 radiators and filters described in ISO-4037, monoenergetic fluorescent X-rays from 8.6 keV to 75 keV were produced. This fluorescent X-rays generated by primary X-rays from radiator were discriminated $K_{\beta}$ lines with the aid of filter material and the only $K_{\alpha}$ X-rays were analyzed with the high purity Ge detector and portable MCA. The air kerma rates were measured with the 35 co ionization chamber and compared with the calculational results, and the beam uniformity and the scattered effects of radiation fields were also measured. The beam purities were more than 90 % for the energy range of 8.6 keV to 75 keV and the air kerma rates were from 1.91 mGy/h (radiator : Au, filter : W) to 54.2 mGy (radiator : Mo, filter : Zr) at 43 cm from center of the radiator. The effective area of beam at the measurement point of air kerma rates was 12 cm ${\times}$ 12 cm and the influence of scattered radiation was less than 3 %. The fluorescent X-rays established in this study could be used for the determination of energy response of the radiation measurement devices and the personal dosemeters in low photon energy regions.

  • PDF

Development of a Moving Body Type Wave Power Generator using Wave Horizontal Motions and Hydraulic Experiment for Electric Power Production (파의 수평운동을 이용한 가동물체형 파력발전장치의 개발과 전력생산에 관한 수리실험)

  • Hwang, Seong Su;Lee, Dong Soo;Yang, Kyong Uk;Byun, Jung Hwan;Park, Il Heum
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.2
    • /
    • pp.73-80
    • /
    • 2016
  • To reduce the mechanical energy loss and to get the high energy efficiency, an apparatus of wave power generation inducing a consistent one way rotating motion from the wave reciprocation motions was developed and the hydraulic experiments for the real electric power production were conducted and the results were discussed. In the experiments for the shape of the buoyant tank, the efficiency of the fixed 9 cm diameter type enduring the wave plate weight was 14.6% and this was the best result for all shapes. But although the free sliding type was expected to represent a high efficiency, the experiments did not show a good result as 8.5% efficiency. Therefore, the shape of buoyant tank was decided as the fixed 9 cm diameter type in the next all tests. In the experiments for the various incident waves, when the water depth was 90 cm, the average efficiencies were measured as 3.9% in the 2nd gear, 4.9% in the 3rd gear, 4.9% in the 4th gear, 12.0% in the 5th gear, 10.0% in the 6th gear, 3.1% in the 7th gear, and 3.0% in the 8th gear. Also, when the water depth was 80 cm, the average efficiency was shown as 15.0% with 5th gear condition. Therefore the high average efficiency as 13.5% was given with 80~90 cm water depth and the 5th gear in the model.

Performance of a Commercial Scale Radio-frequency/vacuum Dryer Combined with a Mechanical Compressive Load (산업용 규모의 압체고주파진공건조시스템 성능 평가)

  • LEE, Nam-Ho;ZHAO, Xue-Feng;HWANG, Ui-Do;CHANG, Sae-Hwan;SHIN, Ik-Hyun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.192-199
    • /
    • 2009
  • This study was carried out to investigate the performance of a radio-frequency/vacuum dryer combined with a mechanical compressive load (RF/VC) with a scale of about $3m^3$ during drying board of Azobe (Lophira alata) and Korean red pine (Pinus densiflora). The degree of vacuum of the RF/VC system was maintained at 80~105 torr, and wood temperature was increased from $40^{\circ}C$ at the beginning of drying to $60^{\circ}C$ at the end of drying and the radiofrequency generator was operated with schedule of 7 minute-ON and 3 minute-OFF. The wood temperatures near charge plate always remained higher than those of the control during all of the drying stage, whereas the wood temperature near ground plate always remained lower than those of the controlled. As drying time proceeding, the temperature of the wood near ground plate presented lower than those of the control. Whereas the temperature of the wood near charge plate presented higher than those of the controlled. The final average moisture contents of the Azobe boards stacked near the input side of the RF generator showed slightly lower than those near the opposite side. Those of the wood stacked in the layers near the charge plate were lower than those of near the ground plate. The average length of surface checks of the Azobe boards stacked near the charge plate was very slight, whereas that toward the ground plate represented high values. The efficiency of input energy was simliar with the commercial systems.

A Study on the Installation of SCR System for Generator Diesel Engine of Existing Ship (기존 선박의 디젤발전기용 SCR 시스템 설치에 관한 연구)

  • Ryu, Younghyun;Kim, Hongryeol;Cho, Gyubaek;Kim, Hongsuk;Nam, Jeonggil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.412-417
    • /
    • 2015
  • The IMO MEPC has been increasingly strengthening the emission standard for marine environment protection. In particular, nitrogen oxide (NOx) emissions of all ocean-going ships built from 2016 will be required to comply with the Tier-III regulation. In this study, a vanadia based SCR (Selective Catalytic Reduction) system developed for ship application was installed on a diesel engine for power generation of the training ship T/S SAENURI in Mokpo National Maritime University. For the present study, the exhaust pipeline of the generator diesel engine was modified to fit the urea SCR system. This study investigated the NOx reduction performance according to the two kind of injection method of urea solution (40%): Auto mode through the PLC (Programable Logic Control) and Manual mode. We were able to find the ammonia slip conditions when in manual mode method. So, the optimal urea injection quantity can be controlled at each engine load (25, 35, 50%) condition. It was achieved 80% reduction on nitrogen oxide. Furthermore, we found that the NOx reduction performance was better with the load up-down (while down to 25% from 50%) than the load down-up (while up to 50% from 25%) test.

Development of Operation Control and AC/DC Conversion Integrated Device for DC Power Application of Small Wind Power Generation System (소형 풍력발전시스템의 직류전원 적용을 위한 운전제어 및 AC/DC변환 통합장치 개발)

  • Hong, Kyungjin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.3
    • /
    • pp.179-184
    • /
    • 2019
  • In many countries, such as developing countries where electricity is scarce, small wind turbines in the form of Off Grid are an effective solution to solve power supply problems. In some countries, the expansion of power systems and the decline of electricity-intensive areas have led to the use of small wind power in urban road lighting, mobile communications base stations, aquaculture and seawater desalination. With this change, the size of the small wind power industry is expected to have greater potential than large-scale wind power. In the case of small wind power generators, the generator is controlled at a variable speed, and the voltage and current generated by the generator have many harmonic components. To solve this problem, the AC to DC converter to be studied in this paper is a three-phase step-up type converter with a single switch. The inductor current is controlled in discontinuous mode, and has a characteristic of having a unit power factor by eliminating the harmonic of the input current. The proposed converter is composed of LCL filter and three phase rectification boost converter at the input stage and a single phase full bridge for grid connection. It is a control system with energy storage system(ESS) that the system stabilization can be pursued against the electric power.

A Study on a Hybrid Energy System to Reduce CO2 Emission In Mavuva Island, Fiji (마부바섬의 이산화탄소 감축을 위한 복합 에너지 시스템에 대한 연구)

  • Jung, Tae Yong;Hyun, Jung Hee;Lee, Seul;Huh, Minkyung
    • Journal of Environmental Impact Assessment
    • /
    • v.26 no.4
    • /
    • pp.217-226
    • /
    • 2017
  • Although the effects of climate change are universal, Small Island Developing States (SIDS) are considered to be most vulnerable. SIDS heavily rely on imported oil and fossil fuels for electricity generation and transportation, which makes them economically vulnerable and exposed to fluctuating oil price. Among the reasons SIDS highly depend on diesel fuel is due to the dispersed population living in remote islands which means, providing electricity through on on-grid system is difficult. Fiji as one of the SIDS, has actively promoted renewable sourced energy through a national plan to mitigate the impacts of climate change. In order to determine how feasible implementing a renewable energy (RE) system will be in Fiji, this study chose a remote island called Mavuva Island to test application of a hybrid RE system using HOMER. A combination of energy storage system (ESS), solar photovoltaic (PV) and diesel generator turns out to be the most cost effective and optimal configuration, resulting in effective greenhouse gas reduction for the given region.

Dynamic Response Analysis of Pneumatic Floating Breakwater Mounted Wave-power Generation System of Oscillating Water Column (진동수주형 파력발전시스템을 탑재한 공기주입식 부유식방파제의 동적거동해석)

  • Lee, Kwang-Ho;Kim, Do-Sam;Jung, Ik-Han
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.6
    • /
    • pp.305-314
    • /
    • 2017
  • Ocean wave energy harvesting is still too expensive despite developing a variety of wave energy converter (WEC) devices. For the cost-effective wave energy harvesting, it can be an effective measure to use existing breakwaters or newly installed breakwaters for both wave control and energy harvesting purposes. In this study, we investigated the functionality of both breakwater and wave-power generator for the oscillating water column (OWC)-type wave energy converter (WEC) installed in a pneumatic floating breakwater, which was originally developed as a floating breakwater. In order to verify the performance of the breakwater as a WEC, the air flow velocity from air-chamber to WEC has to be evaluated properly. Therefore, air flow velocity, wave transformation and motion of floating structure was numerically implemented based on BEM from linear velocity potential theory without considering the compressibility of air within the chamber. Air pressure, meanwhile, was assumed to be fluctuated by the motions of structure and the water level change within air-chamber. The validity of the obtained values can be determined by comparing the previous results from the numerical analysis for different shapes. Based on numerical model results, wave transformation characteristics around OWC system mounted on the fixed and floating breakwaters, and motions of the structure with air flow velocities are investigated. In summary, all numerical results are almost identical to the previous research considering air compressibility. Therefore, it can be concluded that this analysis not considering air compressibility in the air chamber is more efficient and practical method.

Estimation of Leg Collision Strength for Large Wind Turbine Installation Vessel (WTIV) (대형 해상풍력발전기 설치 선박(WTIV) Leg구조의 충돌 강도평가)

  • Park, Joo-Shin;Ma, Kuk-Yeol;Seo, Jung-Kwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.5
    • /
    • pp.551-560
    • /
    • 2020
  • Recently, the offshore wind power generator market is expected to grow significantly because of increased energy demand, reduced dependence on fossil fuel-based power generation, and environmental regulations. Consequently, wind power generation is increasing worldwide, and several attempts have been made to utilize offshore wind power. Norway's Petroleum Safety Authority (PSA) requires a leg-structure design with a collision energy of 35 MJ owing to the event of a collision under operation conditions. In this study, the results of the numerical analysis of a wind turbine installation vessel subjected to ship collision were set such that the maximum collision energy that the leg could sustain was calculated and compared with the PSA requirements. The current leg design plan does not satisfy the required value of 35 MJ, and it is necessary to increase the section modulus by more than 200 % to satisfy the regulations, which is unfeasible in realistic leg design. Therefore, a collision energy standard based on a reasonable collision scenario should be established.

Low-Power Operation Method of Thermal-Energy Harvesting Sensor Circuit (Thermal Energy Harvesting용 센서회로의 저전력 구동 방법)

  • Nam, Hyun Kyung;Pham, Van Khoa;Tran, Bao Son;Nguyen, Van Tien;Min, Kyeong-Sik
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.842-845
    • /
    • 2018
  • In this paper, we propose low-power operational methods for thermal-energy-harvesting sensor circuits. Here, the amount of harvested current has been measured as low as 8uA. However the DC power consumption of the sensor circuit is known to consume much larger than 8uA. Thus, We propose the hardware-based power gating and software-based active/sleep timing control schemes, respectively, for controlling the power consumption of sensor circuit. In the hardware-based power gating scheme, if the ratio of Toff/Ton is larger than 22, the sensor can consume less than 8uA. For the software-based active/sleep control scheme, if the ratio of Tslp/Tact is larger than 3, we can suppress the current consumption below 8uA. The hardware-based and software-based schemes proposed in this paper would be helpful in various applications of energy-harvesting sensor circuits, where the power consumption is limited by an amount of harvested energy.

Development of Rotordynamics Program Based on the 2D Finite Element Method for Flywheel Energy Storage System (2차원 유한요소법을 적용한 플라이휠 에너지 저장 장치 동특성 해석 프로그램 개발)

  • Gu, Dong-Sik;Bae, Yong-Cae;Lee, Wook-Ryun;Kim, Jae-Gu;Kim, Hyo-Jung;Choi, Byeong-Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1757-1763
    • /
    • 2010
  • Flywheel energy storage system (FESS) is defined as a high speed rotating flywheel system that can save surplus electric power. The FESS is proposed as an efficient energy storage system because it can accumulate a large amount of energy when it is operated at a high rotating speed and no mechanical problems are encountered. The FESS consists of a shaft, flywheel, motor/generator, bearings, and case. It is difficult to simulate rotor dynamics using common structure simulation programs because these programs are based on the 3D model and complex input rotating conditions. Therefore, in this paper, a program for the FESS based on the 2D FEM was developed. The 2D FEM can model easier than 3D, and it can present the multi-layer rotor with different material each other. Stiffness changing of the shaft caused by shrink fitting of the hub can be inputted to get clear solving results. The results obtained using the program were compared with those obtained using the common programs to determine any errors.