• Title/Summary/Keyword: Energy deposition

Search Result 1,918, Processing Time 0.035 seconds

A Study on the Method and Application of Shaft Repair using Directed Energy Deposition Process (직접식 에너지 용착 공정을 활용한 축 보수 방법 및 활용 사례 연구)

  • Lee, Yoon Sun;Lee, Min Kyu;Sung, Ji Hyun;Hong, Myeong Pyo;Son, Yong;An, Seouk;Jeong, Oe Cheol;Lee, Ho Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.9
    • /
    • pp.1-10
    • /
    • 2021
  • Recently, the repair and recycling of damaged mechanical parts via metal additive manufacturing processes have been industrial points of interest. This is because the repair and recycling of damaged mechanical parts can reduce energy and resource consumption. The directed energy deposition(DED) process has various advantages such as the possibility of selective deposition, large building space, and a small heat-affected zone. Hence, it is a suitable process for repairing damaged mechanical parts. The shaft is a core component of various mechanical systems. Although there is a high demand for the repair of the shaft, it is difficult to repair with traditional welding processes because of the thermal deformation problem. The objective of this study is to propose a repair procedure for a damaged shaft using the DED process and discuss its applications. Three types of cases, including a small shaft with a damaged surface, a medium-size shaft with a worn bearing joint, and a large shaft with serious damage, were repaired using the proposed procedure. The microstructure and hardness were examined to discuss the characteristics of the repaired component. The efficiency of the repair of the damaged shaft is also discussed.

Carbon Nanotube Deposition using Helicon Plasma CVD at Low Temperature

  • Muroyama, Masakazu;Kazuto, Kimura;Yagi, Takao;Inoue, Kouji;Saito, Ichiro
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.201-202
    • /
    • 2003
  • We developed a novel growth method of aligned carbon nanotubes. Aligned carbon nanotubes are grown on a metal catalyst on a glass substrate using biased Helicon plasma chemical vapor deposition (HPECVD) of $CH_4/H_2$ gases from 400 C to 500 C. The Helicon plasma source is one of the high-density plasma sources and is promising for low temperature carbon deposition. A Ni film was used as a catalyst to reduce the activation energy of the nanotubes' growth. The carbon nanotubes were deposited on the nickel catalysis layer selectively.

  • PDF

Empirical relationship between band gap and synthesis parameters of chemical vapor deposition-synthesized multiwalled carbon nanotubes

  • Obasogie, Oyema E.;Abdulkareem, Ambali S.;Mohammed, Is'haq A.;Bankole, Mercy T.;Tijani, Jimoh. O.;Abubakre, Oladiran K.
    • Carbon letters
    • /
    • v.28
    • /
    • pp.72-80
    • /
    • 2018
  • In this study, an empirical relationship between the energy band gap of multi-walled carbon nanotubes (MWCNTs) and synthesis parameters in a chemical vapor deposition (CVD) reactor using factorial design of experiment was established. A bimetallic (Fe-Ni) catalyst supported on $CaCO_3$ was synthesized via wet impregnation technique and used for MWCNT growth. The effects of synthesis parameters such as temperature, time, acetylene flow rate, and argon carrier gas flow rate on the MWCNTs energy gap, yield, and aspect ratio were investigated. The as-prepared supported bimetallic catalyst and the MWCNTs were characterized for their morphologies, microstructures, elemental composition, thermal profiles and surface areas by high-resolution scanning electron microscope, high resolution transmission electron microscope, energy dispersive X-ray spectroscopy, thermal gravimetry analysis and Brunauer-Emmett-Teller. A regression model was developed to establish the relationship between band gap energy, MWCNTs yield and aspect ratio. The results revealed that the optimum conditions to obtain high yield and quality MWCNTs of 159.9% were: temperature ($700^{\circ}C$), time (55 min), argon flow rate ($230.37mL\;min^{-1}$) and acetylene flow rate ($150mL\;min^{-1}$) respectively. The developed regression models demonstrated that the estimated values for the three response variables; energy gap, yield and aspect ratio, were 0.246 eV, 557.64 and 0.82. The regression models showed that the energy band gap, yield, and aspect ratio of the MWCNTs were largely influenced by the synthesis parameters and can be controlled in a CVD reactor.

Preparation of Alumina-Silica Composite Coatings by Electrophoretic Deposition and their Electric Insulation Properties (EPD 방법을 이용한 알루미나-실리카 복합 코팅막의 제조와 전기절연 특성)

  • Ji, Hye;Kim, Doo Hwan;Park, Hee Jeong;Lim, Hyung Mi;Lee, Seung-Ho;Kim, Dae Sung;Kim, Younghee
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.3
    • /
    • pp.177-183
    • /
    • 2014
  • Alumina-silica composite coating layers were prepared by electrophoretic deposition (EPD) of plate-shaped alumina particles dispersed in a sol-gel binder, which was prepared by hydrolysis and the condensation reaction of methyltrimethoxysilane in the presence of colloidal silica. The microstructure and the electrical and thermal properties of the coatings were compared according to the EPD process parameter: voltage, time and the content of the plate-shaped alumina particles. The electrical insulation property of the coatings was measured by a voltage test. The coatings were prepared by EPD of the sol-gel binder with 5-30 wt% plate alumina particles on parallel electrodes at a distance of 2 cm for 1-10 min under an applied voltage of 10-30 V. The coatings experienced increased breakdown voltage with increasing thickness. However, the higher the thickness was, the smaller the breakdown voltage strength was. A breakdown voltage as high as 4.6 kV was observed with a $400{\mu}m$ thickness, and a breakdown voltage strength as high as 27 kV/mm was achieved for the sample under a $100{\mu}m$ thickness.

Low Temperature Deposition of Microcrystalline Silicon Thin Films for Solar Cells (태양전지용 미세결정 실리콘 박막의 저온 증착)

  • Lee, J.C.;Yoo, J.S.;Kang, K.H.;Kim, S.K.;Yoon, K.H.;Song, J.;Park, I.J.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1555-1558
    • /
    • 2002
  • This paper presents deposition and characterizations of microcrystalline silicon(${\mu}c$-Si:H) films prepared by hot wire chemical vapor deposition at substrate temperature below $300^{\circ}C$. The $SiH_4$ Concentration$[F(SiH_4)/F(SiH_4)+F(H_2)]$ is critical parameter for the formation of Si films with microcrystalline phase. At 6% of silane concentration, deposited intrinsic ${\mu}c$-Si:H films shows sufficiently low dark conductivity and high photo sensitivity for solar cell applications. P-type ${\mu}c$-S:H films deposited by Hot-Wire CVD also shows good electrical properties by varying the rate of $B_2H_6$ to $SiH_4$ gas. The solar cells with structure of Al/nip ${\mu}c$-Si:H/TCO/glass was fabricated with sing1e chamber Hot-Wire CVD. About 3% solar efficiency was obtained and applicability of HWCVD for thin film solar cells was proven in this research.

  • PDF

Experiment Research for Wax Appearance Temperature Determination of Opaque Oil (석유생산 시 유동안정성 확보를 위한 불투명 오일의 왁스생성온도 결정 연구)

  • Kang, Pan-Sang;Hwang, Soon-Hye;Son, Bi-Ryong;Lim, Jong-Se
    • Journal of Energy Engineering
    • /
    • v.24 no.2
    • /
    • pp.1-8
    • /
    • 2015
  • Wax deposition hinders oil flow assurance. Huge amount of money and time were required for mitigation of wax deposition in the oil field. For prediction and mitigation of wax deposition problem, Wax Appearance Temperature(WAT), which is the temperature at which the first wax crystals start to form, needs to be measured in advance. There is a standard method which is optical way to measure the WAT of transparent oil. However, standard method cannot be applied to opaque oil which is common produced oil in the field. In this study, WAT of three transparent oil samples were measured using heat flux variation analysis, viscosity variation analysis and density variation analysis, and compared with WAT measured by standard method. As a result, WAT measured by density variation analysis is the more reliable than heat flux variation analysis and viscosity variation analysis. WAT of two opaque oils were measured using density variation analysis.

Characterization of Microstructure and Thermal property of Ash Deposits on Fire-side Boiler Tube

  • Bang, Jung Won;Lee, Yoon-Joo;Shin, Dong-Geun;Kim, Younghee;Kim, Soo-Ryong;Baek, Chul-Seoung;Kwon, Woo-Teck
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.6
    • /
    • pp.659-664
    • /
    • 2016
  • Ash deposition of heat exchange boiler, caused mainly by accumulation of particulate matter, reduces heat transfer of the boiler system. Heat and mass transfer through porous media such as ash deposits mainly depend on the microstructure of deposited ash. Therefore, in this study, we investigated microstructural and thermal properties of the ash deposited on the boiler tube. Samples for this research were obtained from the fuel economizer tube in an industrial waste incinerator. To characterize microstructures of the ash deposit samples, scanning electron microscope (SEM), energy-dispersive spectroscopy (EDS), inductively coupled plasma optical emission spectroscopy (ICP-OES), X-ray diffraction (XRD) and BET analysis were employed. The results revealed that it had a porous structure with small particles mostly of less than a few micrometers; the contents of Ca and S were 19.3, 22.6% and 18.5, 18.7%, respectively. Also, the results showed that it consisted mainly of anhydrite ($CaSO_4$) crystals. - The thermal conductivities of the ash deposit sample obtained from the economizer tube in industrial waste incinerator were measured to be 0.63 and 0.54 W/mK at $200^{\circ}C$, which were about 100 times less than the thermal conductivity (61.32 W/mK) of the boiler tube itself, indicating that ash deposition on the boiler tube was closely related to a decrease in boiler heat transfer.

Multi Quantum Well 구조를 이용한 Red에서 Green으로의 energy transfer mechanism의 이해

  • Kim, Gang-Hun;Park, Won-Hyeok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.145-145
    • /
    • 2015
  • 처음 유기물의 인광 발견 이후 Host-dopant 시스템을 이용하여 Emission layer(EML)을 Co-deopsition 하는 방법으로 주로 인광 유기 발광 다이오드를 제작 하였다. [1] co-deposition을 이용해 만든 유기 발광 다이오드에 많은 장점이 있지만, 반대로 소자를 제작하는데 있어서는 많은 문제점을 가지고 있다. [2-4] 이러한 문제점을 개선하기 위하여 co-deposition 대신 non-doped Multi Quantum Well(MQW) 구조를 사용하여 doping 하지 않는 방법을 이용하는 논문들이 보고 되고 있다. Hole, electron, exciton이 MQW 구조를 지나면서, dopant well 안에 갇히게 되고, 그 안에서 다른 layer 간에 energy transfer와, hole-electron leakage가 줄어 들어, 더 효율적인 유기 발광 다이오드를 만들 수 있게 된다. [5-7] 이 연구에서는 CBP를 Potential Barrier로 사용하고, Ir(ppy)3 (Green dopant), Ir(btp)2 (Red dopant) 를 각각 Potential Well로 사용하였고, 두께는 CBP 9nm, dopant 1nm로 하였다. 이러한 소자를 만들고 dopant를 3개의 well에 적당히 배치하여, 각 well에서의 실험적인 발광 량 과, EML 안에서의 발광 mechanism 그리고 각 potential barrier를 줄여가며 dexter, forster에 의한 energy transfer에 대하여 알 수 있었다.

  • PDF

The Magnetic Filtering Vacuum Arc Film Deposition System and Its Applications

  • Wang, G.F.;Zhang, H.X.;Zhang, H.J.;Zhu, H.
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.S1
    • /
    • pp.137-140
    • /
    • 1997
  • A cathodic arc with beam filter is employed for the deposition of metallic and hydrogen-free amorphous carbon films. A solenoid filter is used to prevent macropaticles and nonionized atoms from reaching the substrate. The detail transport characters of the filter are presented in the paper. With an optmum filter arrangement we are able to obtain a filter output of 18.4% of the total number of ions produced by the vacuum arc discharge. The deposited amorphous cabon thin film contains no hydrogen and a high fraction of $sp^3$ is determined by XPS. A dense Ti film deposited on H13 steel improves the corrosion resistance of the H13 steel and significant improvements of corrosion resistance were observed by implanting Ti, C in the film.

  • PDF

Effect of Hydrazine as a Complex Agent on the Growth of ZnS Thin Film by Using Chemical Bath Deposition (CBD) (CBD법에 의한 ZnS 박막 성장의 하이드라진 효과)

  • Lee, Cha Ran;Kim, Jeha
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.3
    • /
    • pp.177-181
    • /
    • 2018
  • We prepared ZnS thin films via chemical bath deposition (CBD) in an aqueous solution of ammonia ($NH_3$) and hydrazine ($N_2H_4$). The composition ratio of hydrazine used was 0%, 17%, 22%, 29%, or 50%. We investigated the effects of hydrazine and ammonia on the growth, and the structural and optical properties of ZnS in terms of surface uniformity, voids, and grain size. We found that during the growth of ZnS films, hydrazine was very effective for improving the surface morphology and layer uniformity with fast layer formation, while it had no effect on the bandgap energy, $E_g$.