• Title/Summary/Keyword: Energy deposition

Search Result 1,914, Processing Time 0.023 seconds

Study of a MgO Protective Layer Deposited with Oxygen Ion Beam Assisted Deposition in an AC PDP (Oxygen Ion Beam Assisted Deposition법에 의해 형성된 AC PDP용 MgO 보호막의 특성 연구)

  • Kwon, Sang-Jik;Li, Zhao-Hui
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.7
    • /
    • pp.615-619
    • /
    • 2007
  • MgO layer plays an important role for plasma display panels (PDPs). In this experiment, ion beam assisted deposition (IBAD) methode was uesed to deposit a MgO thin film and the assisting oxygen ion beam energy was varied from 100 eV to 500 eV. In order to investigate the relationship between the secondary electron emission and the defect levels of the MgO layer, we measured the cathodoluminescence (CL) spectra of the MgO thin films, and we analyzed the CL peak intensity and peak transition. The results showed that the assisting ion beam energy played an important role in the peak intensity and the peak transition of the CL spectrum. The properties of MgO thin film were also analyzed using XRD and SEM, these results showed the assisting ion beam energy had direct effect on characteristics of MgO thin film.

Influence of the Thin-Film Ag Electrode Deposition Thickness on the Current Characteristics of a CVD Diamond Radiation Detector

  • Ban, Chae-Min;Lee, Chul-Yong;Jun, Byung-Hyuk
    • Journal of Radiation Protection and Research
    • /
    • v.43 no.4
    • /
    • pp.131-136
    • /
    • 2018
  • Background: We investigated the current characteristics of a thin-film Ag electrode on a chemical vapor deposition (CVD) diamond. The CVD diamond is widely recognized as a radiation detection material because of its high tolerance against high radiation, stable response to various dose rates, and good sensitivity. Additionally, thin-film Ag has been widely used as an electrode with high electrical conductivity. Materials and Methods: Considering these properties, the thin-film Ag electrode was deposited onto CVD diamonds with varied deposition thicknesses (${\fallingdotseq}50/98/152/257nm$); subsequently, the surface thickness, surface roughness, leakage current, and photo-current were characterized. Results and Discussion: The leakage current was found to be very low, and the photo-current output signal was observed as stable for a deposited film thickness of 98 nm; at this thickness, a uniform and constant surface roughness of the deposited thin-film Ag electrode were obtained. Conclusion: We found that a CVD diamond radiation detector with a thin-film Ag electrode deposition thickness close to 100 nm exhibited minimal leakage current and yielded a highly stable output signal.

Joint Interface Observation of V and 17-4PH Stainless Steel Dissimilar Materials Manufactured by Direct Energy Deposition (직접 에너지 적층방식으로 제조된 V과 17-4PH 스테인리스강 이종재료의 접합계면 분석)

  • Lee, Se-Hwan;Kim, Hobeom;Kim, Jeoung Han
    • Journal of Powder Materials
    • /
    • v.29 no.1
    • /
    • pp.8-13
    • /
    • 2022
  • In this study, we have prepared a Ti-6Al-4V/V/17-4 PH composite structure via a direct energy deposition process, and analyzed the interfaces using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The joint interfaces comprise two zones, one being a mixed zone in which V and 17-4PH are partially mixed and another being a fusion zone in the 17-4PH region which consists of Fe+FeV. It is observed that the power of the laser used in the deposition process affects the thickness of the mixed zone. When a 210 W laser is used, the thickness of the mixed zone is wider than that obtained using a 150 W laser, and the interface resembles a serrated shape. Moreover, irrespective of the laser power used, the expected σ phase is found to be absent in the V/17-4 PH stainless steel joint; however, many VN precipitates are observed.

Solar Cell Efficiency Improvement using a Pre-deposition Temperature Optimization in The Solar Cell Doping Process (도핑 공정에서의 Pre-deposition 온도 최적화를 이용한 Solar Cell 효율 개선)

  • Choi, Sung-Jin;Yoo, Jin-Su;Yoo, Kwon-Jong;Han, Kyu-Min;Kwon, Jun-Young;Lee, Hi-Deok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.244-244
    • /
    • 2010
  • Doping process of crystalline silicon solar cell process is very important which is as influential on efficiency of solar. Doping process consists of pre -deposition and diffusion. Each of these processes is important in the process temperature and process time. Through these process conditions variable, p-n junction depth can be controled to low and high. In this paper, we studied a optimized doping pre-deposition temperature for high solar cell efficiency. Using a $200{\mu}m$ thickness multi-crystalline silicon wafer, fixed conditions are texture condition, sheet resistance($50\;{\Omega}/sq$), ARC thickness(80nm), metal formation condition and edge isolation condition. The three variable conditions of pre-deposition temperature are $790^{\circ}C$, $805^{\circ}C$ and $820^{\circ}C$. In the $790^{\circ}C$ pre-deposition temperature, we achieved a best solar cell efficiency of 16.2%. Through this experiment result, we find a high efficiency condition in a low pre-deposition temperature than the high pre-deposition temperature. We optimized a pre-deposition temperature for high solar cell efficiency.

  • PDF

Passivating Contact Properties based on SiOX/poly-Si Thin Film Deposition Process for High-efficiency TOPCon Solar Cells (고효율 TOPCon 태양전지의 SiOX/poly-Si박막 형성 기법과 passivating contact 특성)

  • Kim, Sungheon;Kim, Taeyong;Jeong, Sungjin;Cha, Yewon;Kim, Hongrae;Park, Somin;Ju, Minkyu;Yi, Junsin
    • New & Renewable Energy
    • /
    • v.18 no.1
    • /
    • pp.29-34
    • /
    • 2022
  • The most prevalent cause of solar cell efficiency loss is reduced recombination at the metal electrode and silicon junction. To boost efficiency, a a SiOX/poly-Si passivating interface is being developed. Poly-Si for passivating contact is formed by various deposition methods (sputtering, PECVD, LPCVD, HWCVD) where the ploy-Si characterization depends on the deposition method. The sputtering process forms a dense Si film at a low deposition rate of 2.6 nm/min and develops a low passivation characteristic of 690 mV. The PECVD process offers a deposition rate of 28 nm/min with satisfactory passivation characteristics. The LPCVD process is the slowest with a deposition rate of 1.4 nm/min, and can prevent blistering if deposited at high temperatures. The HWCVD process has the fastest deposition rate at 150 nm/min with excellent passivation characteristics. However, the uniformity of the deposited film decreases as the area increases. Also, the best passivation characteristics are obtained at high doping. Thus, it is necessary to optimize the doping process depending on the deposition method.

A Methodology for Justification and Optimization of Countermeasures for Milk After a Nuclear Accident and Its Application (원자력 사고후 우유에 대한 비상대응의 정당화/최적화를 위한 방법론 및 적용연구)

  • Hwang, Won-Tae;Han, Moon-Hee;Kim, Eun-Han;Cho, Gyu-Seong
    • Journal of Radiation Protection and Research
    • /
    • v.23 no.4
    • /
    • pp.243-249
    • /
    • 1998
  • The methodology for justification and optimization of the countermeasures related with contamination management of milk was designed based on the cost and benefit analysis. The application results were discussed for the deposition on August 15, when pasture is fully developed in Korean agricultural conditions. A dynamic food chain model DYNACON was used to estimate the time-dependent radioactivity of milk after the deposition. The considered countermeasures are (1) the ban of milk consumption (2) the substitution of clean fodder, which are effective in reducing the ingestion dose as well as simple and easy to carry out in the first year after the deposition. The total costs of the countermeasures were quantitatively estimated in terms of cost equivalent of doses and monetary costs. It is obvious that a fast reaction after the deposition is an important factor in cost effectiveness of the countermeasures. In most cases, the substitution of clean fodder was more effective countermeasure than the ban of consumption. A fast reaction after the deposition made longer justifiable/optimal duration of the countermeasure.

  • PDF

Influence of Substrate Phase and Inclination Angle on Heat Transfer Characteristics in Vicinity of Hastelloy X Regions Deposited on S45C via Directed Energy Deposition (DED 공정을 이용한 S45C 위 Hastelloy X 분말 적층 시 기저부 상과 경사각이 적층부 인근 열전달 특성에 미치는 영향에 관한 연구)

  • Baek, Sun-Ho;Lee, Kwang-Kyu;Ahn, Dong-Kyu;Kim, Woo-Sung;Lee, Ho-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.10
    • /
    • pp.27-37
    • /
    • 2021
  • The use of additive manufacturing processes for the repair and remanufacturing of mechanical parts has attracted considerable attention because of strict environmental regulations. Directed energy deposition (DED) is widely used to retrofit mechanical parts. In this study, finite element analyses (FEAs) were performed to investigate the influence of the substrate phase and inclination angle on the heat transfer characteristics in the vicinity of Hastelloy X regions deposited via DED. FE models that consider the bead size and hatch distance were designed. A volumetric heat source model with a Gaussian distribution in a plane was adopted as the heat flux model for DED. The substrate and the deposited powder were S45C structural steel and Hastelloy X, respectively. Temperature-dependent thermal properties were considered while performing the FEAs. The effects of the substrate phase and inclination angle on the temperature distributions and depth of the heat-affected zone (HAZ) in the vicinity of the deposited regions were examined. Furthermore, the influence of deposition paths on depths of the HAZ were investigated. The results of the analyses were used to determine the suitable phase and inclination angle of the substrate as well as the appropriate deposition path.

Importance Analysis of Radiological Exposure by Ground Deposition in Potential Accident Consequences for the Licensing Approval of a Nuclear Power Plant (원전 인허가승인을 위한 사고결말평가에서 지표침적에 의한 피폭의 민감도 분석)

  • Hwang, Won Tae;Jeong, Hae Sun;Jeong, Hyo Joon;Kim, Eun Han;Han, Moon Hee
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.2
    • /
    • pp.89-95
    • /
    • 2014
  • In potential accident consequence assessments for the licensing approval of LWRs, the ground deposition of radionuclides released into the environment is not allowed into the models, as recommended in the U. S. Nuclear Regulatory Commission's regulatory guide. Meanwhile, it is allowed into the assessment models for the licensing approval of PHWRs with consideration of more detailed physical processes of radionuclides in the atmosphere. Under these backgrounds, importance of exposure dose by ground deposition was quantitatively evaluated and comprehensively discussed. For potential accidental releases of $^{137}Cs$ and $^{131}I$, total exposure doses were more conservative in case of without consideration of ground deposition than in case of with its consideration. It was because of that the depletion of air concentration resulting from ground deposition is more influential in the contribution to total exposure doses than additional doses from contaminated ground. The exposure doses by the inhalation of contaminated air showed the contribution of more than 90% in total exposure doses, depending on atmospheric stability, release period of radionuclides and distance from a release point. The exposure doses from contaminated ground showed less than 10% at most in contribution of total exposure doses. The ratios of total exposure doses in case of with consideration of deposition to without its consideration for $^{131}I$ were distinct than those for $^{137}Cs$. As the atmosphere is more stable, release duration of radionuclides is longer, distance from a release point is longer, it was more distinct.

Deposition Velocity of Iodine Vapor ($(I_2)$) for Radish Plants and Its Root-Translocation Factor : Results of Experimental Exposures (요오드 증기($I_2$)의 무 작물체에 대한 침적속도 및 뿌리 전류계수 : 피폭실험 결과)

  • Choi, Yong-Ho;Lim, Kwang-Muk;Jun, In;Park, Doo-Won;Keum, Dong-Kwon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.2
    • /
    • pp.151-158
    • /
    • 2010
  • In order to measure the deposition velocity of $I_2$ vapor for radish plants and its translocation factor for their roots, radish plants were exposed to $I_2$ vapor for 80 min. at different growth stages between 29 and 53 d after sowing. The exposure was performed in a transparent chamber during the morning time. Deposition velocities ($ms^{-1}$) were on the whole in the range of $1.0{\times}10^{-4}{\sim}2.0{\times}10^{-4}$ showing an increasing tendency with an increase in the biomass density. The results showed some agreement with existing reports that a higher relative humidity would lead to a higher deposition velocity. The acquired deposition velocities were lower than by factors of several tens than some field measurements probably due to a very low wind speed (about $0.2\;ms^{-1}$) in the chamber. Translocation factors (ratio of the total iodine in the roots at harvest to the total plant deposition), estimated in a more or less conservative way, were $1.3{\times}10^{-3}$ for an exposure at 29 d after sowing and $5.0{\times}10^{-3}$ for an exposure at 53 d after sowing. In using the present experimental data, meteorological conditions and chemical and physical forms of iodine need to be carefully considered.

A SOLUTION TO THE PROBLEM WITH ABSORBED DOSE

  • Braby, Leslie A.
    • Nuclear Engineering and Technology
    • /
    • v.40 no.7
    • /
    • pp.533-538
    • /
    • 2008
  • In some situations, for example at very low doses, in microbeam irradiation experiments, or around high energy heavy ion tracks, use of the absorbed dose to describe the energy transferred to the irradiated target can be misleading. Since absorbed dose is the expected value of energy per mass it takes into account all of the targets which do not have any energy deposition. In many situations that results in numerical values, in Joules per kg, which are much less than the energy deposited in targets that have been crossed by a charged particle track. This can lead to confusion about the biochemical processes that lead to the consequences of irradiation. There are a few alternative approaches to describing radiation that avoid this potential confusion. Examples of specific situations that can lead to confusion are given. It is concluded that using the particle radiance spectrum and the exposure time, instead of absorbed dose, to describe these irradiations minimizes the potential for confusion about the actual nature of the energy deposition.