• Title/Summary/Keyword: Energy basic unit

Search Result 154, Processing Time 0.026 seconds

G-RAID: A Green RAID Mechanism for enhancing Energy-Efficiency in Massive Storage System (G-RAID: 대용량 저장장치에서 에너지 효율향상을 위한 그린 RAID 기법)

  • Kim, Young-Hwan;Suck, Jin-Sun;Park, Chang-Won;Hong, Ji-Man
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.6
    • /
    • pp.21-30
    • /
    • 2011
  • In the global IT market, a lot of issues for responding to various environmental regulations emerged. In case of the data centers, it is consuming huge amounts of energy to maintain. So there have been various technical attempts as Consolidation, Virtualization, Optimization to efficiently manage energy and data storage to fix the problems. In this paper, we propose a new RAID(Redundant Array of Independent Disks) mechanism which is differing the intensity of power consumption and works to provide data protection and disaster recovery(backup, mirroring etc.) to stratify multiple volumes. G-RAID minimize the power consumption and the lower of I/O performance by selecting the volume depending on the frequency of data access while classifying the power consumption between volumes in storage system. Also, it is possible that a filesystem and block map information of G-RAID is processed by basic unit which is group located in a row for the blocks to work efficiently and can minimize the performance degradation of block mapping load by the access frequency in each groups. As a result, we obtained to elevate a little bit of response time caused by block relocation work, but showed the decrease of power consumption by 38%.

A Bidirectional Dual Buck-Boost Voltage Balancer with Direct Coupling Based on a Burst-Mode Control Scheme for Low-Voltage Bipolar-Type DC Microgrids

  • Liu, Chuang;Zhu, Dawei;Zhang, Jia;Liu, Haiyang;Cai, Guowei
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1609-1618
    • /
    • 2015
  • DC microgrids are considered as prospective systems because of their easy connection of distributed energy resources (DERs) and electric vehicles (EVs), reduction of conversion loss between dc output sources and loads, lack of reactive power issues, etc. These features make them very suitable for future industrial and commercial buildings' power systems. In addition, the bipolar-type dc system structure is more popular, because it provides two voltage levels for different power converters and loads. To keep voltage balanced in such a dc system, a bidirectional dual buck-boost voltage balancer with direct coupling is introduced based on P-cell and N-cell concepts. This results in greatly enhanced system reliability thanks to no shoot-through problems and lower switching losses with the help of power MOSFETs. In order to increase system efficiency and reliability, a novel burst-mode control strategy is proposed for the dual buck-boost voltage balancer. The basic operating principle, the current relations, and a small-signal model of the voltage balancer are analyzed under the burst-mode control scheme in detail. Finally, simulation experiments are performed and a laboratory unit with a 5kW unbalanced ability is constructed to verify the viability of the bidirectional dual buck-boost voltage balancer under the proposed burst-mode control scheme in low-voltage bipolar-type dc microgrids.

Study on the Effect of Membrane Module Configuration on Pervaporative Performance through Model Simulation (모델모사를 이용한 막모듈 연결 및 배열이 투과증발 막성능에 끼치는 영향에 관한 연구)

  • Yeom, Choong-Kyun;Yoon, Seok-Bok;Park, You-In
    • Membrane Journal
    • /
    • v.18 no.4
    • /
    • pp.294-305
    • /
    • 2008
  • This study was focused on the investigation of the effects of membrane module configuration and the temperature of feed retentate flowing along with module length on membrane performance through model simulation. A simulation model of pervaporative dehydration through membrane module assemble in which a number of unit modules are connected in parallel or in series has been established. In this study, ethanol/water mixture was used as model mixture. Some of permeation parameters in the model were quantified directly from the real dehydration pervaporation of ethanol through a lab-made membrane. By adopting the coefficients determined empirically the simulation model could be of more practical value. The simulation of pervaporation with two basic module configurations, that is, parallel connection and series connection, could present the importance of process parameters such as feed rate, module connection mode, number of stages, and inter-stage heating.

Beryllium(II) Recognition by Allosteric Effects in 1,2-Ethylenedioxybenzene Based Ditopic Receptors

  • Kim, Dong-Wan;Kim, Jung-Hwan;Hwang, Jae-Young;Choi, Myong-Yong;Kim, Jae-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.8
    • /
    • pp.2643-2647
    • /
    • 2011
  • Efficient ditopic receptor, uranyl(II) N,N'-(ethylenedioxy)benzenebis(salicylideneimine) (3) for beryllium ion has been obtained upon functionalization of 1,2-ethylenedioxybenzene (1) with a uranyl-salphen (salphen = N,N'-phenylenebis(salicylideneimine)) unit. Binding affinities of the receptor, 3 in AN-DMSO (v/v 95:5) solution have been measured for alkali and alkaline earth metal ions by conductometry comparing 1. The results showed that both monotopic 1 and ditopic receptor 3 were selective for $Be^{2+}$ ions over other cations, while especially 3 that can complex both with cations (coordinated to basic oxygen of ethylenedioxybenzene) and anions (coordinated to the Lewis acidic uranyl center) results in an increase of the stability constants by a factor of $10^{2.42}$ with respect to 1. Furthermore, the $Be^{2+}$-3 interactions are demonstrated by $^1H$ NMR experiments in highly polar solvent medium, DMSO-$d_6$. Higher selectivities were also observed for $Be^{2+}$ when the ditopic receptor, 3 was incorporated into PVC membranes and tested as ion selective electrodes at neutral pH.

Life-cycle estimation of HVDC full-bridge sub-module considering operational condition and redundancy (HVDC 풀-브리지 서브모듈의 동작 조건과 여유율을 고려한 수명예측)

  • Kang, Feel-soon;Song, Sung-Geun
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1208-1217
    • /
    • 2019
  • The life-cycle prediction of the sub-module which is the unit system of MMC is very important from the viewpoint of maintenance and economic feasibility of HVDC system. However, the life-cycle prediction that considers only the type, number and combination of parts is a generalized result that does not take into account the operating condition of the sub-module, and may significantly differ from the life-cycle of the actual one. Therefore, we design a fault tree for the purpose of reflecting the operation characteristics of the full-bridge sub-module and apply the MIL-HDBK-217F to the failure rate of the basic event to predict the life-cycle of the full-bridge sub-module. It compares the life-cycle expectancy of the conventional failure rate analysis with the proposed fault-tree analysis and compares the lifetime according to whether the redundancy of the full-bridge sub-module is considered.

Estimating Standards and Cost Data for Modernized Korean Hosing (Hanok) (신한옥 건설 특성을 반영한 표준품셈 개발)

  • Kim, Suji;Kim, Min;Lee, Yunsub;Jung, Youngsoo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.17 no.1
    • /
    • pp.66-75
    • /
    • 2016
  • As the demands for traditional Korean housing has been increased in recent years, modernized Korean traditional housing (Hanok) was developed as a way of providing Hanok for the public. Modernized Hanok attempts to remedy the shortcomings of the traditional hanok (i.e., high unit cost of building and low energy performance). In the previous researches, standardization and productivity improvement for modernized Hanok dissemination have been intensely developed. Above all, cost estimating for modernized Hanok is also an important factor. In an effort to provide effective system for Hanok construction, this paper developed 'standard cost data' for modernized Hanok. Distinct characteristic of modernized Hanok construction were analyzed first. Then, basic structure was identified, and major items were selected for Hanok standard cost data. However, this set of cost data was developed based on two mock-up Hanok projects actually constructed. Accordingly, this standard cost data will be further updated and modified by continuously accumulating real-world Hanok projects

Behavior Analysis of a Self Excited Induction Generator with Various Loads for a Hybrid Electric Propulsion System (하이브리드 전기추진시스템 구축을 위한 SEIG의 출력 특성 분석)

  • Yang, Joo-Ho;Choi, Gyo-Ho;Lee, Jae-Min;Jeong, Seok-Kwon
    • Journal of Power System Engineering
    • /
    • v.22 no.1
    • /
    • pp.41-47
    • /
    • 2018
  • This paper analyzes the output characteristics of a self excited induction generator with isolated mode according to change of its speeds and loads for building a hybrid electric propulsion system in special purpose ships by using power take off. The induction generators are being considered as an alternative choice to the well-developed generators because of their lower unit cost, inherent ruggedness, operational and maintenance simplicity. However, the generator working by stand alone has a few problems that the reactive power is required to establish the air gap magnetic flux, and the induced voltage and magnetizing current fluctuate when the load is varied. In spite of its advantages, basic design data of the capacitor bank and behaviors of the output characteristics of the generator are not sufficient for the system. Based on the operating condition(speed range of main engine) of the target boat, a reduced experimental equipment system was constructed to analyze the output characteristics of the SEIG. And a suitable capacitor bank of a stand-alone generator and its output characteristics under various loads was investigated in detail through these experiments. According to the experimental result, it was confirmed that the capacitor bank should be $70{\mu}F{\sim}100{\mu}F$, and the proper SEIG induced voltage should be DC 80 V ~ 250 V in order to storage electrical energy into a battery.

Odorous Emissions from Household-related Sources: A Case Study on a Sewage Treatment Plant (생활악취 배출원의 악취 배출 특성 연구: 하수처리장을 중심으로)

  • Jeon, E.C.;Sa, J.H.;Kim, S.T.;Hong, J.H.;Kim, K.H.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.3
    • /
    • pp.337-351
    • /
    • 2006
  • In this study, to describe the basic characteristics of strong odorous sources, the emissions of odorous compounds from a large-scale sewage treatment plant in K city were investigated. According to this study, the emission patterns of major odorous compounds were distinguished clearly by several factors such as treatment processing types, chemical compositions of odors released, and temporal changes (e.g., seasonal variations). For the purpose of this study, emission rates of odorous compounds were quantified using a dynamic flux chamber (DFC) method from three major treatment (T) processes including T1 (Grit sedimentation basin), T2 (Aeration tank), and T3 (Final sedimentation). When the relative strengths of each emission source were compared, the strongest one was seen from T1 with the maximum of $NH_{3}\;(34.5\;{\mu}g/m^{2}/min)$ followed by $H_{2}S\;(20.4\;{\mu}g/m^{2}/min)($. While the strongest emissions of most odorous compounds were seen commonly from T1, those seen from T2 and T3 were significantly reduced relative to the ones found in T1. Considering the general patterns of odorous emission, it is concluded that control of odors from T1 unit is most important because of its considerably high emission strengths.

The Runoff Characteristics of Non-point Pollution Sources in Industrial Complex(I): Focusing on the analysis of runoff water according to the initial rainfall of the C Industrial Complex (산업단지 비점오염원의 유출특성(I): C산업단지의 초기강우에 따른 유출수 분석을 중심으로)

  • Woo, Jae-Suk;Shin, Hyun-Gon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.1
    • /
    • pp.23-32
    • /
    • 2022
  • In this study, rainfall water outlet water quality monitoring was performed on the C industrial complex to evaluate the characteristics of non-point pollutant runoff from the industrial complex during rainfall and to use it as basic data for calculating the load and unit of non-point pollutant. As a result of the IETD analysis, it was selected as a representative rainfall event for simulating non-point pollutants when the rainfall duration was about 21 hours and the rainfall was 26.44mm. Also as a result of monitoring the flow and water quality survey, the first rainfall was 12.2 mm, the rainfall duration was 12 hr, the number of preceding dry days was 3 days, the second rainfall was 22.1 mm, the rainfall duration was 12 hr, and the number of preceding dry days was 7 days.

Enteral Nutrition in Critically Ill Patient With Septic Shock Requiring Vasopressor: Case Report

  • Hee Young Kim;Min Young Noh;Jisun Lee
    • Clinical Nutrition Research
    • /
    • v.13 no.1
    • /
    • pp.1-7
    • /
    • 2024
  • Nutritional support in critically ill patients is an essential aspect of treatment. In particular, the benefits of enteral nutrition (EN) are well recognized, and various guidelines recommend early EN within 48 hours in critically ill patients. However, there is still controversy regarding EN in critically ill patients with septic shock requiring vasopressors. Therefore, this case report aims to provide basic data for the safe and effective nutritional support in septic shock patients who require vasopressors. A 62-year-old male patient was admitted to the intensive care unit with a deep neck infection and mediastinitis that progressed to a septic condition. Mechanical ventilation was initiated after intubation due to progression of respiratory acidosis and deterioration of mental status, and severe hypotension required the initiation of norepinephrine. Due to hemodynamic instability, the patient was kept nil per os. Subsequently, trophic feeding was initiated at the time of norepinephrine dose tapering and was gradually increased to achieve 75% of the energy requirement through EN by the 7th day of enteral feeding initiation. Although there were signs of feeding intolerance during the increasing phase of EN, adjusting the rate of EN resolved the issue. This case report demonstrates the gradual progression and adherence to EN in septic shock patient requiring vasopressors, and the progression observed was relatively consistent with existing studies and guidelines. In the future, further case reports and continuous research will be deemed necessary for safe and effective nutritional support in critically ill patients with septic shock requiring vasopressors.