• 제목/요약/키워드: Energy band structure

검색결과 531건 처리시간 0.025초

광전자분광법을 이용한 Co/Pd 다층박막의 전자구조연구 (Valence Band Photoemission Study of Co/Pd Multilayer)

  • 강정수;강상국;정재인;홍재화;이영백;신현준
    • 한국자기학회지
    • /
    • 제3권1호
    • /
    • pp.48-55
    • /
    • 1993
  • 광전자분광법 (Photoelectron Spectroscopy : PES)을 이용하여, 차세대 광자기 기록매체로 유망한 Co/Pd 다층박막의 전자구조를 연구하였다. Co/Pd 다층박막의 Co 3d 전자 PES 스펙트럼에서는 페르미 에너지 ($E_{F}$) 근처에 폭이 좁은 피이크가 관찰되었고, 아울러 $E_{F}$로부터 약 2.5 eV 아래에 폭이 넓은 피이크도 관찰되었다. 그 중 $E_{F}$ 근처에 위치한 피이크의 폭은 bulk Co 3d 전자 PES 스펙트럼에서의 피이크폭에 비하여 훨씬 좁았는데, 이러한 차이는 Co 자기모멘트가 Co/Pd 다층박막에서 buik Co 에 비하여 증진되는 현상과 일치한다. 한편 $E_{F}$ 아래 2.5 eV에 의치한 피이크는 Pd의 valence band 구조와 유사함이 발견되었는데, 이는 Co 단층과 Pd 단층간에 상당한 상호작용 (hybridization)이 있음을 나타낸다고 볼 수 있다. Co/Pd 다층박막에 대하여 실험적으로 결정한 Co 3d 전자 Pes 스펙트럼을 국재스핀밀도함수이론을 이용하여 얻은 이론적 전자구조 계산결과와 비교하였다. 이상의 비교에 의하면 밴드이론계산에 의한 Co 3d 밴드폭은 실험과 잘 일치하였으나, PES 스펙트럼에서 관찰되어진 $E_{F}$ 근처의 폭이 좁은 피이크는 밴드이론이 잘 기술하지 못함이 발견되었다.

  • PDF

Simple fabrication route for vertically-aligned CZTS nanorod arrays for photoelectrochemical application based on AAO template

  • 김지민;양우석;오윤정;문주호
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.402.2-402.2
    • /
    • 2016
  • In photoelectrochemical (PEC) water splitting, Cu2ZnSnS4 (CZTS) compound has attracted intense attention as a photocathode due to not only large optical absorption coefficient, but also earth-abundance of constituent elements and suitable band alignment. With rapid development of nanotechnology, one-dimensional nanostructures of CZTS have been investigated as a potential form to achieve high efficiency because the nanostructures are expected to be capable of capturing more light and enhancing charge separation and transport. Here, we report a well-controlled fabrication route for vertically-aligned CZTS nanorod arrays on anodic aluminium oxide (AAO) template via simple sol-gel process followed by deposition of ZnS or CdS buffer layers on the CZTS nanorod to enhance charge separation. The structure, morphology, composition, optical absorption, and PEC properties of the resulting CZTS nanorod samples were characterized using X-ray diffraction, Raman spectroscopy, transmission electron microscopy, energy dispersive X-ray spectrometry, scanning electron microscopy, and UV-vis spectroscopy.

  • PDF

Large Area Bernal Stacked Bilayer Graphene Grown by Multi Heating Zone Low Pressure Chemical Vapor Deposition

  • Han, Jaehyun;Yeo, Jong-Souk
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.239.2-239.2
    • /
    • 2015
  • Graphene is a most interesting material due to its unique and outstanding properties. However, semi-metallic properties of graphene along with zero bandgap energy structure limit further application to optoelectronic devices. Recently, many researchers have shown that band gap can be induced in the Bernal stacked bilayer graphene. Several methods have been used for the controlled growth of the Bernal staked bilayer graphene, but it is still challenging to control the growth process. In this paper, we synthesize the large area Bernal stacked bilayer graphene using multi heating zone low pressure chemical vapor deposition (LPCVD). The synthesized bilayer graphenes are characterized by Raman spectroscopy, optical microscope (OM), scanning electron microscopy (SEM). High resolution transmission electron microscopy (HRTEM) is used for the observation of atomic resolution image of the graphene layers.

  • PDF

이동 보상 기법을 이용한 서브밴드 부호화 시스템에 관한 연구 (A Study on the Subband Coding System Using Motion Compensation Techniques)

  • 이기승;박용철;서정태;윤대희
    • 전자공학회논문지B
    • /
    • 제31B권10호
    • /
    • pp.99-111
    • /
    • 1994
  • A motion picture compression scheme using subband coding with motion compensation is presneted in this paper. A hierarchical subband decomposition is used to split the image signal into 10 subbands with a 3-layer pyramid structure and motion compensation is used in each band. However, in this case, motion vector information is drastically increased; therefore, initial motion vectors are estimated in the highest pyramid and motion vectors are refined using the reconsructed subband signal in each layer. Simulation results show that the proposed method compares favorably in terms of prediction error energy and side informatio with methods requiring additional information. Images recostructed from the proposed method show good quality compared to those reconstructed using blockwise DCT.

  • PDF

Micro-Raman characterization of isolated single wall carbon nanotubes synthesized using Xylene

  • Choi, Young Chul
    • Carbon letters
    • /
    • 제14권3호
    • /
    • pp.175-179
    • /
    • 2013
  • Isolated single wall carbon nanotubes (SWCNTs) were synthesized by chemical vapor deposition (CVD) using a liquid precursor (xylene) as a carbon source. Transmission electron microscopy (TEM) and atomic force microscopy confirmed the isolated structure of the SWCNTs. Micro-Raman measurements showed a tangential G-band peak ($1590cm^{-1}$) and radial breathing mode (RBM) peaks ($150-240cm^{-1}$). The tube diameters determined from the RBM frequencies are in good agreement with those obtained from TEM. The chirality of the isolated SWCNTs could be determined based on the energy of the laser and their diameter. A further preliminary study on the nitrogen doping of isolated SWCNTs was carried out by the simple use of acetonitrile dissolved in the precusor.

$CuInS_2$ 박막 제조 및 그 특성 (Fabrication and Characteristics of $CuInS_2$ Thin Film)

  • 박계춘;정운조;김성구;류용택;정해덕;이진
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1992년도 추계학술대회 논문집
    • /
    • pp.84-89
    • /
    • 1992
  • The polycrystalline $CuInS_2$ thin films are prepared by vacuum heat treatment of layer, which is deposited by vaccum evaporation in order. The electrical and optical properties of the films are investigated at various sulfur deposition mole rate, substrate temperature, heat treatment temperature and time. From data, n type-$CuInS_2$ exhibits resistivity, transmittance and energy band gap with 142[${\Omega}{\cdot}cm$], 73[%], and 1.5[eV] respectively at optimum fabrication condition. Finally, the films are fabricated with chalcoprite structure.

  • PDF

rf 마그네트론 스퍼터링으로 증착한 Mg-doped Zinc Tin Oxide막의 특성에 미치는 산소의 영향 (Effects of Oxygen on the Properties of Mg-doped Zinc Tin Oxide Films Prepared by rf Magnetron Sputtering)

  • 박기철;마대영
    • 한국전기전자재료학회논문지
    • /
    • 제26권5호
    • /
    • pp.373-379
    • /
    • 2013
  • Mg-doped zinc tin oxide (ZTO:Mg) thin films were prepared on glasses by rf magnetron sputtering. $O_2$ was introduced into the chamber during the sputtering. The optical properties of the films as a function of oxygen flow rate were studied. The crystal structure, elementary properties, and depth profiles of the films were investigated by X-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), and secondary ion mass spectrometry (SIMS), respectively. Bottom-gate transparent thin film transistors were fabricated on $N^+$ Si wafers, and the variation of mobility, threshold voltage etc. with the oxygen flow rate were observed.

The Interfacial Electronic Structure of Organic-organic Heterojunction: Effect of Molecular Orientation

  • 조상완
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.114.2-114.2
    • /
    • 2014
  • The orientation of the constituent molecules in organic thin film devices can affect significantly their performance due to the highly anisotropic nature of ${\pi}$-conjugated molecules. We report here an angle dependent x-ray absorption study of the control of such molecular orientation using well-ordered interlayers for the case of a bilayer heterojunction of chloroaluminum phthalocyanine (ClAlPc) and C60. Furthermore, the orientation-dependent energy level alignment of the same bilayer heterojunction has been measured in detail using synchrotron radiation-excited photoelectron spectroscopy. Regardless of the orientation of the organic interlayer, we find that the subsequent ClAlPc tilt angle improves the ${\pi}-{\pi}$ interaction at the interface, thus leading to an improved short-circuit current in photovoltaic devices based on ClAlPc/C60. The use of the interlayers does not change the effective band gap at the ClAlPc/C60 heterointerface, resulting in no change in open-circuit voltage.

  • PDF

반도체 마이크로 머시닝 기술을 이용한 전자기형 진동 트랜스듀서의 실리콘 탄성체 구현 (Fabrication of Silicon Elastic Body of Electromagnetic Type Vibration Transducer by Using Micromachining Technique)

  • 이기찬;이세규;박세광;권기진;조진호;이상흔
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 추계학술대회 논문집 학회본부 C
    • /
    • pp.1142-1144
    • /
    • 1999
  • A 4-beam cross type silicon elastic body was fabricated for the electromagnetic type vibration micro transducer. To improve energy transfer efficiency, the structure and size of vibration transducer were optimized by the FEA simulation package. Experimental results of the fabricated transducer shows $0.5{\sim}8$ dyne of vibration force at the condition of $1{\sim}4$ mA of current source $100{\sim}7000$ Hz of frequency band width. These results presented the useful applications for micro actuators and sensors.

  • PDF

MOCVD법에 의한 Ti(IV)-Fe(III) 산화물 박막의 광전기화학적 특성 (Photoelectrochemical Property of Ti(IV)-Fe(III) Oxide Films Deposited by MOCVD)

  • 김현수;윤재홍
    • 한국표면공학회지
    • /
    • 제32권4호
    • /
    • pp.538-546
    • /
    • 1999
  • Ti(IV)-Fe(III) oxide films were formed by MOCVD technique, and their photoelectrochemical properties were examined in 0.5M N $a_2$$SO_4$ solution by a photoelectrochemical polarization test. Ti(IV)-Fe(III) oxide films deposited at 40$0^{\circ}C$ by MOCVD have crystalline structure and are all n-type semiconductors. The photocurrent and the quantum efficiency of the films increase with increasing the iron cationic fraction ($X_{Fe}$ ) in the films. The energy band gap of the films increase linearly with increasing the iron cationic fraction in the films. Ti(IV)-Fe(III) oxide film of $X_{Fe}$ /=0.60 has high photocurrent response and corrosion resistance simultaneously.

  • PDF