• Title/Summary/Keyword: Energy Transmission

Search Result 2,704, Processing Time 0.027 seconds

Development of PFFEM, the new vibroacoustic analysis system in medium-to-high frequency ranges (중고주파에서의 새로운 진동해석시스템, PFFEM 개발연구)

  • Seo, Seong-Hoon;Hong, Suk-Yoon;Park, Do-Hyun;Kil, Hyun-Gwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.325-333
    • /
    • 2000
  • To predict vibrational energy density and intensity of partitioned complex system structures in medium-to-high frequency ranges, Power Flow Finite Element Method(PFFEM) programs for the plate elements are developed. The flexural, longitudinal and shear waves in plates are formulated and the joint element equations for multi-couped plates are fully developed. Also the wave transmission approach has been introduced to cover the energy transmission and reflection at the joint plate elements. Using the developed PFFEM program the energy density and intensity of the submarine and automobile shape structures are predicted with a harmonic point force at a single frequency.

  • PDF

A Block Adaptive Bit Allocation for Progressive Transmission of Mean Difference Pyramid Image (Mean difference pyramid 영상의 점진적 전송을 위한 블록 적응 비트 배정)

  • 김종훈;신재범;심영석
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.4
    • /
    • pp.130-137
    • /
    • 1993
  • In this paper, A progressive coding of mean difference pyramid by Hadamard transform of the difference between two successive pyramid levels has been studied. A block adaptive bit allocation method based on ac energy of each sub-block has been proposed, which efficiently reduces the final distortion in the progressive transmission of image parameters. In our scheme, the dc energy equals the sum of the quantization errors of the Hadamard transform coefficients at previous level. Therefore proposed allocation method includes the estimation of dc energy at each pyramid level. Computer simulation results show some improvements in terms of MSE and picture quality over the conventional fixed allocation scheme.

  • PDF

Vibration Power Flow Analysis of Submarine-shaped Structures using Developed Software

  • Seo, Seong-Hoon;Hong, Suk-Yoon
    • Journal of Ship and Ocean Technology
    • /
    • v.6 no.2
    • /
    • pp.1-11
    • /
    • 2002
  • For the analysis of vibrational energy density and intensity of partitioned complex system structures in medium-to-high frequency ranges, A software based on the Power Flow Analysis(PFA) has been developed for the plate elements. The flexural, longitudinal and shear waves in plates are formulated and the joint element equations for multi-coupled plates are fully developed. Also, the wave transmission approach has been introduced to cover the energy transmission and reflection at the joint plate elements. To confirm the validity of the developed PFA software, the submarine-shaped complex structures are used for the analysis of vibration intensity and energy density.

Application of the Through-Transmitted Ultrasonic Signal for the Identification of Two-Phase Flow Patterns in a Simulated High Temperature Vertical Channel

  • Chu In-Cheol;Song Chul-Hwa;Baek Won-Pil
    • Nuclear Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.12-23
    • /
    • 2004
  • In the present study a new measurement technique has been developed, which uses an ultrasonic transmission signal in order to identify the vertical two phase flow pattern. The ultrasonic measurement system developed in the present study not only provides the information required for the identification of vertical two phase flow patterns but also makes real time identification possible. Various vertical two phase flow patterns such as bubbly, slug, churn, annular flow etc. have been accurately identified with the present ultrasonic measurement system under atmospheric condition. In addition, the present test apparatus can practically simulate the ultrasonic propagation characteristics under high temperature and high pressure systems. Therefore, it is expected that the present ultrasonic flow pattern identification technique could be applicable to the vertical two phase flow systems under high temperature and high pressure conditions.

Vibration analysis of 2300 TEU container ship using power flow analysis program in medium-to-high frequency ranges (파워흐름해석 프로그램을 이용한 2300 TEU 컨테이너선의 중고주파 대역 진동해석)

  • 서성훈;박영호;홍석윤;길현권
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1061-1066
    • /
    • 2001
  • To predict vibrational energy density and intensity of beam-plate coupled complex structures in medium-to-high frequency ranges, Power Flow Finite Element Method(PFFEM) programs for plate, beam and some coupled structural elements are developed. The flexural, longitudinal and shear waves in plates are formulated and the joint element equations for multi-couped plates are fully developed. Also the wave transmission approach has been introduced to cover the energy transmission and reflection at the joint elements. Using the developed PFFEM program, vibration analysis for 2300TEU container ship model is performed and here the model data for this program are obtained by converting fonner FE model for structural analysis. This program predicts successfully the vibrational energy density and intensity upto 8,000 Hz for the ship model with over 50,000 DOF.

  • PDF

Sensitivity simulation on isotopic fissile measurement using neutron resonances

  • Lee, YongDeok;Ahn, Seong-Kyu;Choi, Woo-Seok
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.637-643
    • /
    • 2022
  • Uranium and plutonium are required to be accounted in spent fuel head-end and major recovery area in pyro-process for safeguards purpose. The possibility of neutron resonance technique, as a nondestructive analysis, was simulated on isotopic fissile analysis for large scale process. Neutron resonance technique has advantage to distinguish uranium from plutonium directly in mixture. Simulation was performed on U235 and Pu239 assay in spent fuel and for scoping examination of assembly type. The resonance energies were determined for U235 and Pu239. The linearity in the neutron transmission was examined for the selected resonance energies. In addition, the limit for detection was examined by changing sample density, thickness and content for actual application. Several factors were proposed for neutron production and the moderated neutron source was simulated for effective and efficient transmission measurement. From the simulation results, neutron resonance technique is promising to analyze U235 and Pu239 for spent fuel assembly. An accurate fissile assay will contribute to an increased safeguards for the pyro-processing system and international credibility on the reuse of fissile materials in the fuel cycle.

Comparison of Efficiency Analysis of Device Energy Used in Object Communication (사물통신에 사용되는 디바이스 에너지의 효율화 분석 고찰)

  • Hwang, Seong-Kyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.6
    • /
    • pp.1106-1112
    • /
    • 2017
  • As the Internet of Things (IOT) is evolving into an industry-wide service and expanded to the concept of Internet of Everything (IoE), services using IoT devices are easily accessible in everyday life. IoT requires more devices to collect information and is expected to increase the number of devices by 50 billion by 2020, and is about the number of devices currently available. Gradually, the number of mobile devices, smart devices, and Internet devices is increasing, and energy resources are required to operate such a large number of Internet devices, and the energy consumed by each device is small. In this paper, we consider the number of devices to be increased and generate a signal irrespective of transmission information so that power other than the energy required for signal transmission is consumed. When transmission information is generated and near to a receiver to receive information, The method to be used as an analysis is designed through experiments.

A Data Aggregation Scheme based on Designated Path for Efficient Energy Management of Sensor Nodes in Geosensor Networks (지오센서 네트워크에서 센서 노드의 효율적인 에너지 관리를 위한 지정 경로 기반 데이터 집계 처리 기법)

  • Yoon, Min;Kim, Yong-Ki;Bista, Rabindra;Chang, Jae-Woo
    • Journal of Korea Spatial Information System Society
    • /
    • v.12 no.1
    • /
    • pp.10-17
    • /
    • 2010
  • Sensor nodes used in Geosensor network are resource limited and power constrained. So it is necessary to research on routing protocols to gather data by using energy efficiently. Wireless sensor networks collect data gathered from sensor nodes by transfering it to the sink using multihop. However, it has two problems. First, the existing works require unnecessary data transmission for choosing a proper parent node to transfer data. Secondly, they have a large number of data transmission because each sensor node has a different path. To solves the problems, we, in this paper, propose a designated path based data aggregation scheme for efficient energy management in WSNs. The proposed scheme can reduce unnecessary data transmission by pre-determining a set of paths and can enable all the sensor nodes to participate in gathering data by running them in round-robin fashion. We show from performance analysis that the proposed scheme is more energy efficient than the existing directed diffusion(DD) and the hierarchical data aggregation(HDA).

Systematic Network Coding for Computational Efficiency and Energy Efficiency in Wireless Body Area Networks (무선 인체 네트워크에서의 계산 효율과 에너지 효율 향상을 위한 시스테매틱 네트워크 코딩)

  • Kim, Dae-Hyeok;Suh, Young-Joo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.10A
    • /
    • pp.823-829
    • /
    • 2011
  • Recently, wireless body area network (WBAN) has received much attention as an application for the ubiquitous healthcare system. In WBAN, each sensor nodes and a personal base station such as PDA have an energy constraint and computation overhead should be minimized due to node's limited computing power and memory constraint. The reliable data transmission also must be guaranteed because it handles vital signals. In this paper, we propose a systematic network coding scheme for WBAN to reduce the network coding overhead as well as total energy consumption for completion the transmission. We model the proposed scheme using Markov chain. To minimize the total energy consumption for completing the data transmission, we made the problem as a minimization problem and find an optimal solution. Our simulation result shows that large amount of energy reduction is achieved by proposed systematic network coding. Also, the proposed scheme reduces the computational overhead of network coding imposed on each node by simplify the decoding process.

Vibrational energy flow in steel box girders: Dominant modes and components, and effective vibration reduction measures

  • Derui Kong;Xun Zhang;Cong Li;Keer Cui
    • Steel and Composite Structures
    • /
    • v.50 no.3
    • /
    • pp.347-362
    • /
    • 2024
  • Controlling vibrations and noise in steel box girders is important for reducing noise pollution and avoiding discomfort to residents of dwellings along bridges. The fundamental approach to solving this problem involves first identifying the main path of transmission of the vibration energy and then cutting it off by using targeted measures. However, this requires an investigation of the characteristics of flow of vibration energy in the steel box girder, whereas most studies in the area have focused on analyzing its single-point frequency response and overall vibrations. To solve this problem, this study examines the transmission of vibrations through the segments of a steel box girder when it is subjected to harmonic loads through structural intensity analysis based on standard finite element software and a post-processing code created by the authors. We identified several frequencies that dominated the vibrations of the steel box girder as well as the factors that influenced their emergence. We also assessed the contributions of a variety of vibrational waves to power flow, and the results showed that bending waves were dominant in the top plate and in-plane waves in the vertical plate of the girder. Finally, we analyzed the effects of commonly used stiffened structures and steel-concrete composite structures on the flow of vibration energy in the girder, and verified their positive impacts on energy regionalization. In addition to providing an efficient tool for the relevant analyses, the work here informs research on optimizing steel box girders to reduce vibrations and noise in them.