• Title/Summary/Keyword: Energy Transfer Resistance

Search Result 243, Processing Time 0.033 seconds

A Study on the I-V and I-P Characteristics for Optimized Operation of PEMFC (고분자 전해질형 연료전지의 최적운전을 위한 전압-전류, 전류-전력 특성 연구)

  • Jung, You-Ra;Choi, Young-Sung;Lee, Kyung-Sup
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.1
    • /
    • pp.112-116
    • /
    • 2010
  • Fuel cell as a renewable energy source is clean and has a lot of advantages. The source can solve energy crisis and environmental problems such as greenhouse effect, air pollution and the ozone layer destruction. This paper introduces hybrid system(hydro-Genius Professional, heliocentris) of solar cell and fuel cell. Also, this paper shows the I-P, V-I characteristics of fuel cells which are connected in parallel and series. From these results, we also found the maximum power was transferred at 0.5[${\Omega}$]. The terminal voltage was also decreased according to the current because of the internal resistance. The power transfer in series was two times than that in parallel.

New Polymer Electrolytes for Solid State Dye-Sensitized Solar Cells (고분자 전해질을 이용한 고체형 염료감응 태양전지)

  • Kang, Yong-Soo;Lee, Yong-Gun;Kang, Moon-Sung;Kim, Jong-Hak;Char, Kook-Chen
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.231-234
    • /
    • 2007
  • The solid state dye-sensitized saolrc cells (DSSCs) employing polymer electrolytes show high overall energy conversion efficiency as high as 4.5% at 1 sun conditions. The improved efficiency may be primarily due to the enlarged interfacial contact area between the electrolyte and dyes in addition to the increased ionic conductivity, which were done by utilizing liquid oligomers, followed by in situ self-solidification, to form the solid DSSCs "Oligomer Approach". The effect of the charge transfer resistance at the counter electrode side on the effciency has also been investigated.

  • PDF

Identification of Internal Resistance of Microbial Fuel Cell by Electrochemical Technique and Its Effect on Voltage Change and Organic Matter Reduction Associated with Power Management System (전기화학적 기법에 의한 미생물연료전지 내부저항 특성 파악 및 전력관리시스템 연계 전압 변화와 유기물 저감에 미치는 영향)

  • Jang, Jae Kyung;Park, Hyemin;Kim, Taeyoung;Yang, Yoonseok;Yeo, Jeongjin;Kang, Sukwon;Paek, Yee;Kwon, Jin Kyung
    • Journal of Biomedical Engineering Research
    • /
    • v.39 no.5
    • /
    • pp.220-228
    • /
    • 2018
  • The internal resistance of microbial fuel cell (MFC) using stainless steel skein for oxidizing electrode was investigated and the factors affecting the voltage generation were identified. We also investigated the effect of power management system (PMS) on the usability for MFC and the removal efficiency of organic pollutants. The performance of a stack microbial fuel cell connected with (PMS) or PMS+LED was analyzed by the voltage generation and organic matter reduction. The maximum power density of the unit cells was found to be $5.82W/m^3$ at $200{\Omega}$. The maximum current density was $47.53A/m^3$ without power overshoot even under $1{\Omega}$. The ohmic resistance ($R_s$) and the charge transfer resistance ($R_{ct}$) of the oxidation electrode using stainless steel skein electrode, were $0.56{\Omega}$ and $0.02{\Omega}$, respectively. However, the sum of internal resistance for reduction electrode using graphite felts loaded Pt/C catalyst was $6.64{\Omega}$. Also, in order to understand the internal resistance, the current interruption method was used by changing the external resistance as $50{\Omega}$, $300{\Omega}$, $5k{\Omega}$. It has been shown that the ohm resistance ($R_s$) decreased with the external resistance. In the case of a series-connected microbial fuel cell, the reversal phenomenon occurred even though two cells having the similar performance. However, the output of the PMS constantly remained for 20 hours even when voltage reversal occurred. Also the removal ability of organic pollutants (SCOD) was not reduced. As a result of this study, it was found that buffering effect for a certain period of time when the voltage reversal occurred during the operation of the microbial fuel cell did not have a serious effect on the energy loss or the operation of the microbial fuel cell.

Improved structures of stainless steel current collector increase power generation of microbial fuel cells by decreasing cathodic charge transfer impedance

  • Nam, Taehui;Son, Sunghoon;Kim, Eojn;Tran, Huong Viet Hoa;Koo, Bonyoung;Chai, Hyungwon;Kim, Junhyuk;Pandit, Soumya;Gurung, Anup;Oh, Sang-Eun;Kim, Eun Jung;Choi, Yonghoon;Jung, Sokhee P.
    • Environmental Engineering Research
    • /
    • v.23 no.4
    • /
    • pp.383-389
    • /
    • 2018
  • Microbial fuel cell (MFC) is an innovative environmental and energy system that converts organic wastewater into electrical energy. For practical implementation of MFC as a wastewater treatment process, a number of limitations need to be overcome. Improving cathodic performance is one of major challenges, and introduction of a current collector can be an easy and practical solution. In this study, three types of current collectors made of stainless steel (SS) were tested in a single-chamber cubic MFC. The three current collectors had different contact areas to the cathode (P $1.0cm^2$; PC $4.3cm^2$; PM $6.5cm^2$) and increasing the contacting area enhanced the power and current generations and coulombic and energy recoveries by mainly decreasing cathodic charge transfer impedance. Application of the SS mesh to the cathode (PM) improved maximum power density, optimum current density and maximum current density by 8.8%, 3.6% and 6.7%, respectively, comparing with P of no SS mesh. The SS mesh decreased cathodic polarization resistance by up to 16%, and cathodic charge transfer impedance by up to 39%, possibly because the SS mesh enhanced electron transport and oxygen reduction reaction. However, application of the SS mesh had little effect on ohmic impedance.

Preparation of PVDF Hollow Fiber Membrane and Absorption of SO2 from Flue Gas Using Bench Scale Gas-Liquid Contactor (PVDF 중공사막 제조 및 벤치규모 기-액 접촉기를 이용한 SO2 흡수특성)

  • Park, Hyun-Hee;Jo, Hang-Dae;Kim, In-Won;Lee, Hyung-Keun
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.521-528
    • /
    • 2008
  • The micro-porous asymmetric PVDF hollow fiber membranes for gas-liquid contactor were prepared by the dry-jet wet phase inversion process and the characteristics of hollow fiber membranes were evaluated by the gas permeation method and scanning electron microscope. The chemical absorbent for removal of $SO_2$ gas was sodium hydroxide at bench scale hollow fiber membrane contactor. The experiments were performed in a counter-current mode of operation with gas in the shell side and liquid in the fiber lumen of the module to examine the effect of various operating variables such as concentration of absorbent, gas flow rate, L/G ratio and concentration of inlet $SO_2$ gas on the $SO_2$ removal efficiency using PVDF hollow fiber membrane contactor. Membrane mass transfer coefficient($k_m$) was calculated by mathematical modeling. The volumetric overall mass transfer coefficient increased with increasing the concentration of absorbent and L/G ratio. The increase of the absorbent concentration and L/G ratio not only provides more sufficient alkalinity but also decreases liquid phase resistance. The volumetric overall mass transfer coefficient increased with increasing gas flow rate due to decreasing the gas phase resistance.

Methanol Steam Reforming Using Multilayer Cup Structure for Catalyst Support (촉매 지지용 다층 컵 구조를 이용한 메탄올 수증기 개질 반응 연구)

  • JI, HYUNJIN;LEE, JUNGHUN;CHOI, EUNYEONG;YANG, SUNGHO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.2
    • /
    • pp.202-209
    • /
    • 2020
  • In methanol steam reforming, commercial catalysts in the form of pellets are mainly used, but there are limitations to directly apply them to underwater weapon systems that require shock resistance and heat transfer characteristics. In this study, to overcome this problem, a multi-layer cup structure (MLCS) was applied to support a pellet type catalyst. The characteristics of pellet catalyst supported by MLCS and the pellet catalyst supported by conventional structure (CS) were compared by the reforming experiment. In the case of MLCS, a high methanol conversion rate was shown in the temperature range 200 to 300℃ relative to the CS manufactured with the same catalyst weight as MLCS. CS shown similar characteristics to MLCS when it manufactured in the same volume as MLCS by adding an additional 67% of the catalyst. In conclusions, MLCS can not only reduce catalyst usage by improving heat transfer characteristics, but also support pellet catalyst in multiple layers, thus improving shock resistance characteristics.

Effect of Thermal Post-Treatment using the Black Body Networking of Carbon Nano Structure For Internal Conduction from Solar Radiation (태양복사열 내부전도 성능향상을 위한 탄소 나노구조체 흑체코팅 열처리 효과연구)

  • Kim, Dae Weon;Jang, Seong Min;Lee, Du Hui;Park, June Yi;Kim, Young Bae
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.4
    • /
    • pp.159-164
    • /
    • 2021
  • The Improvement of thermal performance using heat treatment of carbon nanotubes coated on the copper heat sink to take the radiation energy from solar ray for the energy harvesting in earth orbit. Using the additive coating of purified CNT for the increase of specific area and development of thermal conductive capacity, the performance of heat transfer is improved about 0.181 K/W while applying the power of 22 W under temperature of 3.98℃. Coating of purified CNT shows increase of area and volume of thermal layer however it led the partial thermal resistance.

An Experimental Study on the Heat Transfer Characteristics during the Freezing Process of Water in the Vertical Multi Tube Type Ice Storage Tank (수직다발관형 빙축열 탱크내 물의 응고과정시 열전달특성에 관한 연구)

  • Kim, Y.K.;Yim, C.S.
    • Solar Energy
    • /
    • v.18 no.3
    • /
    • pp.95-105
    • /
    • 1998
  • In this study, basic design data which were required for development of highly efficient ice storage system with low temperature latent heat were experimentally obtained. The ice storage system considered in this study was the one that has been widly used in the developed country and called the ice-on-coil type. Using the system, the ice storage performance for various design parameters which were the flow direction and the inlet temperature of the secondary fluid was tested. In addition, the timewise variation of the interface profiles between the solid and the liquid were visualized, and the heat transfer characteristics of the Phase Change Material(PCM) in the ice storage tank were Investigated. During the freezing processes in the ice storage tank with several vertical tubes, decrease of the heat transfer area and the heat resistance of the ice layer made the increasing rate of ice packing factor(IPF) less. The total freezing energy for the upward flow of the secondary fluid was higher than that for the downward flow. The average ice storage efficiency for the upward flow of the secondary fluid was higher than that for the downward flow.

  • PDF

Study on Effects of Seawater Fouling on a Plate-Frame Heat Exchanger (해수 파울링이 판형 열교환기 성능에 미치는 영향에 대한 고찰)

  • Heo, Jaehyeok;Lee, Dong-Won;Kim, Min-Hwi;Baik, Wonkeun;Yun, Rin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.8
    • /
    • pp.391-400
    • /
    • 2017
  • Understanding of seawater fouling characteristics is critical in designing a heat exchanger adapted in an effluent utilization system for a power plant. We reviewed three types of fouling mechanisms of general, biological, and crystallizing for a plate-frame heat exchanger, to be used for heat exchanging with heated effluent from a power plant. Also, mathematical models for each type of seawater fouling were suggested. Actual thermal resistance calculated from seawater fouling models were compared and implemented in designing a plate-frame heat exchanger. The bio-fouling model revealed the largest thermal resistance and the highest number of plates for a plate-frame heat exchanger under the same heat load. Overall heat transfer coefficient and pressure drop of a plate-frame heat exchanger under fouling conditions was lower by 58 percent and higher by 2.85 times than those under clean conditions, respectively.

Thermal transfer behavior in two types of W-shape ground heat exchangers installed in multilayer soils

  • Yoon, Seok;Lee, Seung-Rae;Go, Gyu-Hyun;Xue, Jianfeng;Park, Hyunku;Park, Dowon
    • Geomechanics and Engineering
    • /
    • v.6 no.1
    • /
    • pp.79-98
    • /
    • 2014
  • This paper presents an experimental and numerical study on the evaluation of a thermal response test using a precast high-strength concrete (PHC) energy pile and a closed vertical system with W-type ground heat exchangers (GHEs). Field thermal response tests (TRTs) were conducted on a PHC energy pile and on a general vertical GHE installed in a multiple layered soil ground. The equivalent ground thermal conductivity was determined by using the results from TRTs. A simple analytical solution is suggested in this research to derive an equivalent ground thermal conductivity of the multilayered soils for vertically buried GHEs. The PHC energy pile and general vertical system were numerically modeled using a three dimensional finite element method to compare the results with TRTs'. Borehole thermal resistance values were also obtained from the numerical results, and they were compared with various analytical solutions. Additionally, the effect of ground thermal conductivity on the borehole thermal resistance was analyzed.