• Title/Summary/Keyword: Energy Storage Device

Search Result 337, Processing Time 0.025 seconds

Dynamic Time Constant Based High-Performance Insulation Resistance Calculation Method (동적 시정수 기반 고성능 절연 저항 계산 기법)

  • Son, Gi-Beom;Hong, Jong-Phil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.8
    • /
    • pp.1058-1063
    • /
    • 2020
  • This paper presents a new insulation resistance calculation technique to prevent electric shock and fire accidents due to the dielectric breakdown in the primary insulation section of the IT ground system. The solar power generation market is growing rapidly due to the recent expansion of renewable energy and energy storage systems, but as the insulation is destroyed and fire accidents frequently occur, a device for monitoring the insulation resistance state is indispensable to the IT grounding method. Compared to the conventional algorithm that use a method of multiplying a time constant to a fixed coefficient, the proposed insulation resistance calculation method has a fast response time and high accuracy over a wide insulation resistance range by applying a different coefficient according to the values of the insulation impedance. The proposed dynamic time constant based insulation resistance calculation technique reduces the response time by up to 39.29 seconds and improves the error rate by 20.11%, compared to the conventional method.

Variations in electrode characteristics through simplification of phosphorus-doped NiCo2O4 electrode manufacturing process (인이 도핑된 NiCo2O4 전극 제조 공정의 간소화를 통한 전극 특성의 변화)

  • Seokhee-Lee;Hyunjin Cha;Jeonghwan Park;Young Guk Son;Donghyun Hwang
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.5
    • /
    • pp.299-308
    • /
    • 2023
  • In this study, phosphorus (P)-doped nickel cobaltite (P-NiCo2O4) and nickel-cobalt layered double hydroxide (P-NiCo-LDH) were synthesized on nickel (Ni) foam as a conductive support using hydrothermal synthesis. The thermal properties, crystal structure, microscopic surface morphology, chemical distribution, electronic state of the constituent elements on the sample surface, and electrical properties of the synthesized P-NiCo2O4 and P-NiCo-LDH samples were analyzed using thermogravimetric analysis-differential scanning calorimetry (TGA-DSC), X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy (EIS). The P-NiCo2O4 electrode exhibited a specific capacitance of 1,129 Fg-1 at a current density of 1 Ag-1, while the P-NiCo-LDH electrode displayed a specific capacitance of 1,012 Fg-1 at a current density of 1 Ag-1. When assessing capacity changes for 3,000 cycles, the P-NiCo2O4 electrode exhibited a capacity retention rate of 54%, whereas the P-NiCo-LDH electrode showed a capacity retention rate of 57%.

Development of flexible energy storage device based on reduced graphene oxide (rGO)/single-walled carbon nanotubes (SWNTs) composite (환원된 그래핀/단일벽 탄소나노튜브 복합체를 이용한 플렉시블 에너지 저장 매체의 개발)

  • Yoo, Yeong Hwan;Cho, Jae Bong;Kim, Yong Ryeol;Jeong, Hyeon Taek
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.3
    • /
    • pp.593-598
    • /
    • 2016
  • We report on the preparation of reduced graphene oxide (rGO)/single-walled carbon nanotubes (SWNTs) electrodes deposited onto flexible polyethylene terephthalate (PET) via spray coating technique. The highest capacitance value of the unbent rGO/SWNTs electrode was $82Fg^{-1}$ in 1 M $H_2SO_4$ at $100mVs^{-1}$, which decreased to $38Fg^{-1}$ after 500 bending cycle. Further characterization, including galvanostatic charge/discharge measurements and electrochemical impedance spectroscopy (EIS), showed that the rGO/SWNTs electrode retained a well-defined capacitive response after repetitive bending cycle. Overall, the rGO/SWNTs composite electrode showed reasonable electrochemical properties even prolonged bending cycle. Approximately 50% of the initial capacitance for the rGO/SWNTs composite electrode is remained after 500 bending cycle, making the electrode a potential option for flexible energy storage applications.

Preparation of Vinyl Waste-derived Separator and Enhancement of Electrochemical Performance using Electrospinning and Plasma Treatment (전기방사와 산소 플라즈마 처리를 활용한 폐비닐 기반의 분리막 합성 및 전기화학적 성능 향상 연구)

  • Chan-Gyo Kim;Yoon-Ho Ra;Suk Jekal;Chang-Min Yoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.32 no.1
    • /
    • pp.31-38
    • /
    • 2024
  • In this study, vinyl waste, which is the cause of environmental pollution, is recycled via an electrospinning method and applied as a separator that can be employed for energy storage devices. In detail, vinyl wastes are dissolved in a solution containing p-xylene and cyclohexanone, followed by electrospinning to obtain a vinyl waste-derived separator(VWS), and then the hydrophilic functional groups on the surface of VWS are introduced using a plasma treatment to improve wettability. Scanning electron microscopy analysis have verified that the shape and thickness of as-spun VWS vary depending on the concentration of vinyl waste. The surface hydrophility of VWS is modified by plasma treatment with applied powers ranging from 80 to 120W. The lowest contact angle is observed when the 100W power is applied to VWS(VWS-100W). In electrochemical analysis, the VWS-100W-based supercapacitor device shows the highest specific capacitance of 57.9 F g-1. This is ascribed to the high porosity achieved by electrospinning as well as the introduction of hydrophilic functional groups by the oxygen plasma treatment. In conclusion, vinyl waste is successfully recycled into separators for energy storage devices, suggesting a new way to reduce environmental pollution.

High safety battery management system of DC power source for hybrid vessel (하이브리드 선박 직류전원용 고 안전 BMS)

  • Choi, Jung-Leyl;Lee, Sung-Geun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.7
    • /
    • pp.635-641
    • /
    • 2016
  • In order to drive a hybrid propulsion device which combines an engine and an electric propulsion unit, battery packs that contain dozens of unit cells consisting of a lithium-based battery are used to maintain the power source. Therefore, it is necessary to more strictly manage a number of battery cells at any given time. In order to manage battery cells, generally voltage, current, and temperature data under load condition are monitored from a personal computer. Other important elements required to analyze the condition of the battery are the internal resistances that are used to judge its state-of-health (SOH) and the open-circuit voltage (OCV) that is used to check the battery charging state. However, in principle, the internal resistances cannot be measured during operation because the parallel equivalent circuit is composed of internal loss resistances and capacitance. In most energy storage systems, battery management system (BMS) operations are carried out by using data such as voltage, current, and temperature. However, during operation, in the case of unexpected battery cell failure, the output voltage of the power supply can be changed and propulsion of the hybrid vehicle and vessel can be difficult. This paper covers the implementation of a high safety battery management system (HSBMS) that can estimate the OCV while the device is being driven. If a battery cell fails unexpectedly, a DC power supply with lithium iron phosphate can keep providing the load with a constant output voltage using the remainder of the batteries, and it is also possible to estimate the internal resistance.

Implementation and Economic Evaluation of Movable Power Supply Device for Electric Vehicle (EV용 이동형 전원공급장치의 구현 및 경제성 평가에 관한 연구)

  • Choi, Sung-Moon;Han, Byeong-Gill;Lee, Hu-Dong;Kim, Mi-Young;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.77-86
    • /
    • 2020
  • Power quality problems caused by feeder voltage drop and extension construction cost problems can occur with the increasing utilization rates of the existing fixed-type EV (electric vehicle) charger. Moreover, EV users might not be able to access the EV charger due to a lack of EV charging facilities. Therefore, this paper proposes an MPSD (movable power supply device) for EVs to overcome user inconvenience caused by the insufficient number of chargers and extension cost issues. The proposed MPSD was mainly composed of a PV (photovoltaic) system, ESS (energy storage system), EV charging system, and monitoring and control system. Furthermore, there are three operation modes available to enhance the flexibility of the MPSD application, depending on the situation. This paper also presents an economical evaluation modeling using the present worth method to consider the cost and benefit elements. The simulation results based on proposed modeling showed that MPSD is more economical than the existing EV charger. Moreover, its profit can be increased significantly depending on the distance to the installation point.

Recent Progress in Micro In-Mold Process Technologies and Their Applications (마이크로 인몰드 공정기술 기반 전자소자 제조 및 응용)

  • Sung Hyun Kim;Young Woo Kwon;Suck Won Hong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.2
    • /
    • pp.1-12
    • /
    • 2023
  • In the current era of the global mobile smart device revolution, electronic devices are required in all spaces that people interact with. The establishment of the internet of things (IoT) among smart devices has been recognized as a crucial objective to advance towards creating a comfortable and sustainable future society. In-mold electronic (IME) processes have gained significant industrial significance due to their ability to utilize conventional high-volume methods, which involve printing functional inks on 2D substrates, thermoforming them into 3D shapes, and injection-molded, manufacturing low-cost, lightweight, and functional components or devices. In this article, we provide an overview of IME and its latest advances in application. We review biomimetic nanomaterials for constructing self-supporting biosensor electronic materials on the body, energy storage devices, self-powered devices, and bio-monitoring technology from the perspective of in-mold electronic devices. We anticipate that IME device technology will play a critical role in establishing a human-machine interface (HMI) by converging with the rapidly growing flexible printed electronics technology, which is an integral component of the fourth industrial revolution.

High Voltage Performance of the Electrical Double Layer Capacitor with Various Electrolytes (다양한 전해액을 적용한 전기이중층 커패시터의 고전압 특성 연구)

  • Kim, Jung Wook;Choi, Seung-Hyun;Kim, Jeom-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.20 no.2
    • /
    • pp.34-40
    • /
    • 2017
  • Electric double layer capacitors (EDLC: electric double layer capacitors) have drew attention as an energy storage device for the next generation because of their outstanding power capability and durability. But their usage is somewhat limited due to low energy density over secondary batteries. One of methods to improve the energy of EDLC is expanding the voltage window of cell operation by increasing the charge cut-off voltage. In this study, $SBP-BF_4$ (spirobipyrrolidinium tetrafluoroborate), $TEA-BF_4$ (tetraethylammonium tetraflouroborate) and $EMI-BF_4$ (1-ethyl-3-methylimidazolium tetrafluoroborate) in AN (acetonitrile) were selected to evaluate the possibility of application at high voltage environment. The LSV (linear sweep voltammetry) measurements showed that the 1.5M SBP-BF4/AN electrolyte was stable over a wide potential window and showed the best electrochemical performance compared to other combinations of electrolytes at high voltage environments (over 3.0 V). Furthermore, TMSP (tris(trimethylsilyl) phosphite) was applied to 1.5M SBP-BF4/AN in order to maintain stable performance at high voltage for the long period of time. The electrolyte with TMSP additive showed the capacity retention of 93% after 10,000 cycles at 3.3 V.

Nanoscale Pattern Formation of Li2CO3 for Lithium-Ion Battery Anode Material by Pattern Transfer Printing (패턴전사 프린팅을 활용한 리튬이온 배터리 양극 기초소재 Li2CO3의 나노스케일 패턴화 방법)

  • Kang, Young Lim;Park, Tae Wan;Park, Eun-Soo;Lee, Junghoon;Wang, Jei-Pil;Park, Woon Ik
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.83-89
    • /
    • 2020
  • For the past few decades, as part of efforts to protect the environment where fossil fuels, which have been a key energy resource for mankind, are becoming increasingly depleted and pollution due to industrial development, ecofriendly secondary batteries, hydrogen generating energy devices, energy storage systems, and many other new energy technologies are being developed. Among them, the lithium-ion battery (LIB) is considered to be a next-generation energy device suitable for application as a large-capacity battery and capable of industrial application due to its high energy density and long lifespan. However, considering the growing battery market such as eco-friendly electric vehicles and drones, it is expected that a large amount of battery waste will spill out from some point due to the end of life. In order to prepare for this situation, development of a process for recovering lithium and various valuable metals from waste batteries is required, and at the same time, a plan to recycle them is socially required. In this study, we introduce a nanoscale pattern transfer printing (NTP) process of Li2CO3, a representative anode material for lithium ion batteries, one of the strategic materials for recycling waste batteries. First, Li2CO3 powder was formed by pressing in a vacuum, and a 3-inch sputter target for very pure Li2CO3 thin film deposition was successfully produced through high-temperature sintering. The target was mounted on a sputtering device, and a well-ordered Li2CO3 line pattern with a width of 250 nm was successfully obtained on the Si substrate using the NTP process. In addition, based on the nTP method, the periodic Li2CO3 line patterns were formed on the surfaces of metal, glass, flexible polymer substrates, and even curved goggles. These results are expected to be applied to the thin films of various functional materials used in battery devices in the future, and is also expected to be particularly helpful in improving the performance of lithium-ion battery devices on various substrates.

Recent Progress in Air Conditioning and Refrigeration Research - A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2002 and 2003 - (공기조화, 냉동 분야의 최근 연구 동향 -2002년 및 2003년 학회지 논문에 대한 종합적 고찰 -)

  • Chung Kwang-Seop;Kim Min Soo;Kim Yongchan;Park Kyoung Kuhn;Park Byung-Yoon;Cho Keumnam
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.12
    • /
    • pp.1234-1268
    • /
    • 2004
  • A review on the papers published in the Korean Journal of Air-Conditioning and Refrigerating Engineering in 2002 and 2003 has been carried out. Focus has been put on current status of research in the aspect of heating, cooling, air-conditioning, ventilation, sanitation and building environment/design. The conclusions are as follows. (1) Most of fundamental studies on fluid flow were related with heat transportation in diverse facilities. Drop formation and rivulet flow on solid surfaces were interesting topics related with condensation augmentation. Research on micro environment considering flow, heat transfer, humidity was also interesting to promote comfortable living environment. It can be extended considering biological aspects. Development of fans and blowers of high performance and low noise were continuing research topics. Well developed CFD technologies were widely applied for analysis and design of various facilities and their systems. (2) Heat transfer characteristics of enhanced finned tube heat exchangers and heat sinks were extensively investigated. Experimental studies on the boiling heat transfer, vortex generators, fluidized bed heat exchangers, and frosting and defrosting characteristics were also conducted. In addition, the numerical simulations on various heat exchangers were performed and reported to show heat transfer characteristics and performance of the heat exchanger. (3) A review of the recent studies shows that the performance analysis of heat pump have been made by various simulations and experiments. Progresses have been made specifically on the multi-type heat pump systems and other heat pump systems in which exhaust energy is utilized. The performance characteristics of heat pipe have been studied numerically and experimentally, which proves the validity of the developed simulation programs. The effect of various factors on the heat pipe performance has also been examined. Studies of the ice storage system have been focused on the operational characteristics of the system and on the basics of thermal storage materials. Researches into the phase change have been carried out steadily. Several papers deal with the cycle analysis of a few thermodynamic systems which are very useful in the field of air-conditioning and refrigeration. (4) Recent studies on refrigeration and air-conditioning systems have focused on the system performance and efficiency enhancement when new alternative refrigerants are applied. Heat transfer characteristics during evaporation and condensation are investigated for several tube shapes and new alternative refrigerants including natural refrigerants. Efficiency of various compressors and performance of new expansion devices are also dealt with for better design of refrigeration/air conditioning system. In addition to the studies related with thermophysical properties of refrigerant mixtures, studies on new refrigerants are also carried out. It should be noted that the researches on two-phase flow are constantly carried out. (5) A review of the recent studies on absorption refrigeration system indicates that heat and mass transfer enhancement is the key factor in improving the system performance. Various experiments have been carried out and diverse simulation models have been presented. Study on the small scale absorption refrigeration system draws a new attention. Cooling tower was also the research object in the respect of enhancement its efficiency, and performance analysis and optimization was carried out. (6) Based on a review of recent studies on indoor thermal environment and building service systems, it is noticed that research issues have mainly focused on several innovative systems such as personal environmental modules, air-barrier type perimeterless system with UFAC, radiant floor cooling system, etc. New approaches are highlighted for improving indoor environmental conditions and minimizing energy consumption, various activities of building energy management and cost-benefit analysis for economic evaluation.