• Title/Summary/Keyword: Energy Scheduling

Search Result 384, Processing Time 0.027 seconds

Energy-Aware Task Scheduling for Multiprocessors using Dynamic Voltage Scaling and Power Shutdown (멀티프로세서상의 에너지 소모를 고려한 동적 전압 스케일링 및 전력 셧다운을 이용한 태스크 스케줄링)

  • Kim, Hyun-Jin;Hong, Hye-Jeong;Kim, Hong-Sik;Kang, Sung-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.7
    • /
    • pp.22-28
    • /
    • 2009
  • As multiprocessors have been widely adopted in embedded systems, task computation energy consumption should be minimized with several low power techniques supported by the multiprocessors. This paper proposes an energy-aware task scheduling algorithm that adopts both dynamic voltage scaling and power shutdown in multiprocessor environments. Considering the timing and energy overhead of power shutdown, the proposed algorithm performs an iterative task assignment and task ordering for multiprocessor systems. In this case, the iterative priority-based task scheduling is adopted to obtain the best solution with the minimized total energy consumption. Total energy consumption is calculated by considering a linear programming model and threshold time of power shutdown. By analyzing experimental results for standard task graphs based on real applications, the resource and timing limitations were analyzed to maximize energy savings. Considering the experimental results, the proposed energy-aware task scheduling provided meaningful performance enhancements over the existing priority-based task scheduling approaches.

An Energy-Efficient Hybrid Scheduling Technique for Real-time and Non-real-time Tasks in a Sensor Node (센서 노드에서 에너지 효율적인 실시간 및 비실시간 태스크의 혼합 스케줄링 기법)

  • Tak, Sung-Woo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.8
    • /
    • pp.1820-1831
    • /
    • 2011
  • When both types of periodic and aperiodic tasks are required to run on a sensor node platform with limited energy resources, we propose an energy-efficient hybrid task scheduling technique that guarantees the deadlines of real-time tasks and provides non-real-time tasks with good average response time. The proposed hybrid task scheduling technique achieved better performance than existing EDF-based DVS scheduling techniques available in the literature, the FIFO-based TinyOS scheduling technique, and the task-clustering based non-preemptive real-time scheduling technique.

Real-time Scheduling for (m,k)-firm Deadline Tasks on Energy-constrained Multiprocessors (한정된 전력량을 가진 멀티프로세서 시스템에서 (m,k)-firm 데드라인 태스크를 위한 실시간 스케줄링 기법)

  • Kong, Yeonhwa;Cho, Hyeonjoong
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.2 no.6
    • /
    • pp.237-244
    • /
    • 2013
  • We propose Energy-constrained Multiprocessor Real-Time Scheduling algorithms for (m,k)-firm deadline constrained tasks (EMRTS-MK). Rather than simply saving as much energy as possible, we consider energy as hard constraint under which the system remains functional and delivers an acceptable performance at least during the prescribed mission time. We evaluate EMRTS-MKs in several experiments, which quantitatively show that they achieve the scheduling objectives.

Energy Optimized Transmission Strategy in CDMA Reverse Link: Graph Theoretic Approach (역방향 CDMA 시스템에서 에너지 최적화된 전송기법: 그래프 이론적 접근)

  • Oh, Changyoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.6
    • /
    • pp.3-9
    • /
    • 2015
  • We investigate rate scheduling and power allocation problem for a delay constrained CDMA systems. Specifically, we determine an energy efficient scheduling policy, while each user maintains the short term (n time slots) average throughput. We consider a multirate CDMA system where multirate is achieved by multiple codes. Each code can be interpreted as a virtual user. The aim is to schedule the virtual users into each time slot, such that the sum of transmit energy in n time slots is minimized. We then show that the total energy minimization problem can be solved by a shortest path algorithm. We compare the performance of the optimum scheduling with that of TDMA-type scheduling.

Bio-Inspired Energy Efficient Node Scheduling Algorithm in Wireless Sensor Networks (무선 센서 망에서 생체 시스템 기반 에너지 효율적인 노드 스케쥴링 기법)

  • Son, Jae-Hyun;Shon, Su-Goog;Byun, Hee-Jung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.6
    • /
    • pp.528-534
    • /
    • 2013
  • The energy consumption problem should be taken into consideration in wireless sensor network. Many studies have been proposed to address the energy consumption and delay problem. In this paper, we propose BISA(Bio-inspired Scheduling Algorithm) to reduce the energy consumption and delay in wireless sensor networks based on biological system. BISA investigates energy-efficient routing path and minimizes the energy consumption and delay using multi-channel for data transmission by multiplexing data transmission path. Through simulation, we confirm that the proposed scheme guarantees the efficient energy consumption and delay requirement.

An Energy Efficient Algorithm Based on Clustering Formulation and Scheduling for Proportional Fairness in Wireless Sensor Networks

  • Cheng, Yongbo;You, Xing;Fu, Pengcheng;Wang, Zemei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.559-573
    • /
    • 2016
  • In this paper, we investigate the problem of achieving proportional fairness in hierarchical wireless sensor networks. Combining clustering formulation and scheduling, we maximize total bandwidth utility for proportional fairness while controlling the power consumption to a minimum value. This problem is decomposed into two sub-problems and solved in two stages, which are Clustering Formulation Stage and Scheduling Stage, respectively. The above algorithm, called CSPF_PC, runs in a network formulation sequence. In the Clustering Formulation Stage, we let the sensor nodes join to the cluster head nodes by adjusting transmit power in a greedy strategy; in the Scheduling Stage, the proportional fairness is achieved by scheduling the time-slot resource. Simulation results verify the superior performance of our algorithm over the compared algorithms on fairness index.

Cellular-Automata Based Node Scheduling Scheme for Wireless Sensor Networks (무선 센서 네트워크를 위한 셀룰러 오토마타 기반의 노드 스케줄링 제어)

  • Byun, Heejung;Shon, Sugook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.10
    • /
    • pp.708-714
    • /
    • 2014
  • Wireless sensor networks (WSNs) generally consist of densely deployed sensor nodes that depend on batteries for energy. Having a large number of densely deployed sensor nodes causes energy waste and high redundancy in sensor data transmissions. The problems of power limitation and high redundancy in sensing coverage can be solved by appropriate scheduling of node activity among sensor nodes. In this paper, we propose a cellular automata based node scheduling algorithm for prolonging network lifetime with a balance of energy savings among nodes while achieving high coverage quality. Based on a cellular automata framework, we propose a new mathematical model for the node scheduling algorithm. The proposed algorithm uses local interaction based on environmental state signaling for making scheduling decisions. We analyze the system behavior and derive steady states of the proposed system. Simulation results show that the proposed algorithm outperforms existing protocols by providing energy balance with significant energy savings while maintaining sensing coverage quality.

A Beacon Scheduling for Mesh Topology in Wireless Sensor Networks (무선 센서 네트워크에서 메쉬 토폴로지를 위한 비컨 스케줄링)

  • Kim, Min-Jeong;Shim, Jun-Ho
    • The Journal of Society for e-Business Studies
    • /
    • v.15 no.4
    • /
    • pp.49-58
    • /
    • 2010
  • The wireless sensor network technology becomes one of core technologies to make it possible to implement various e-business applications. Energy efficiency is an important issue in wireless sensor networks. IEEE 802.15.4, a representative international standard for wireless sensor networks, provides the beacon enabled mode for energy-efficient communication. However, the beacons may conflict each other when the network is of multi-hop topology such as mesh or cluster-tree topology with beacon-enabled mode. The beacon conflict causes the failure of synchronization between sensor nodes, and affects other nodes in the network in that unsynchronized nodes cannot participate in communication. In this paper, we suggest an energy-efficient beacon scheduling for the wireless sensor networks. Nodes can save their energy duringperiod and prevent beacon conflict using beacon scheduling. We implement the scheduling using QualNet, and evaluate the performance under mesh topology networks. It turns out that the proposed scheduling may improve the energy efficiency in the networks.

Energy Consumption Scheduling in a Smart Grid Including Renewable Energy

  • Boumkheld, Nadia;Ghogho, Mounir;El Koutbi, Mohammed
    • Journal of Information Processing Systems
    • /
    • v.11 no.1
    • /
    • pp.116-124
    • /
    • 2015
  • Smart grids propose new solutions for electricity consumers as a means to help them use energy in an efficient way. In this paper, we consider the demand-side management issue that exists for a group of consumers (houses) that are equipped with renewable energy (wind turbines) and storage units (battery), and we try to find the optimal scheduling for their home appliances, in order to reduce their electricity bills. Our simulation results prove the effectiveness of our approach, as they show a significant reduction in electricity costs when using renewable energy and battery storage.

A Cooperative Energy-efficient Scheduling Scheme for Heterogeneous Wireless Networks (이기종 무선망에서 에너지 효율 개선을 위한 망간 협력 기반 스케쥴링 기법)

  • Kim, Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.1
    • /
    • pp.3-8
    • /
    • 2016
  • Wireless networks have evolved to the appearance of heterogeneous wireless networks(HetNet), where various networks provide data services with various data rates and coverage. One of technical issues for HetNet is efficient utilization of radio resources for system performance enhancement. For the next generation wireless networks, energy saving has become one of key performance indices, so energy-efficient resource management schemes for HetNet need to be developed. This paper addresses an energy-efficient scheduling for HetNet in order to improve the energy efficiency while maintaining similar system throughput as existing scheme, for which an energy-efficient scheduling that energy efficiency factor is included. Simulation results show that the proposed scheme achieves the reduction of energy consumption while admitting limited ragne of throughput degradation in comparison with the conventional proportional fair scheduling.