• Title/Summary/Keyword: Energy Plant

Search Result 3,878, Processing Time 0.031 seconds

Combustion Chracteristics of Biomass and Refuse Derived Fuel (바이오매스와 폐기물 고형연료의 연소특성)

  • Gu, Jae-Hoi;Oh, Sea Cheon
    • Applied Chemistry for Engineering
    • /
    • v.23 no.5
    • /
    • pp.456-461
    • /
    • 2012
  • To verify the utilization of biomass as energy, the combustion characteristic has been studied by an experimental combustion furnace under an isothermal and non-isothermal combustion. The wood pellet, rice straw and rice husk were used as biomass samples in this work. The characteristics of emission gases, dusts and residues from biomass combustion have been analyzed and compared with those of reuse derived fuel (RDF). From isothermal combustion experiments, it was found that the incomplete combustion of rice straw was greater that that of rice husk, wood pellet and RDF. This is due to the fact that the combustion reaction rate of the rice straw was faster than that of other samples, and the oxygen concentration in rice straw combustion was rapidly decreasing. It was also found that $NO_{X}$ concentration of emission gas from wood pellet combustion was the lowest. From non-isothermal combustion experiments, it was found that all samples were burned before $900^{\circ}C$. Also, the temperature range of $NO_{X}$ emission was similar to that of CO emission, on the other hand, $SO_{2}$ was emitted at a higher temperature than that of CO emission.

Effects of Drought Stress on Photosynthetic Capacity and Photosystem II Activity in Oplopanax elatus (수분스트레스가 땃두릅나무의 광합성 능력 및 광계 II의 활성에 미치는 영향)

  • Lee, Kyeong Cheol;Kim, Sun Hee;Park, Wan Geun;Kim, Young Seol
    • Korean Journal of Medicinal Crop Science
    • /
    • v.22 no.1
    • /
    • pp.38-45
    • /
    • 2014
  • This study was performed to investigate the physiological responses of Oplopanax elatus by water condition. Drought stress was induced by withholding water for 26 days. The results show that $P_{N\;max}$, SPAD, gs, E and Ci were significantly decreased with decreasing of soil moisture contents. However, AQY and WUE were decreased slightly only at 26 day. This implies that photosynthetic rate is reduced due to an inability to regulate water and $CO_2$ exchange through the stomatal. According to JIP analysis, ${\Phi}_{PO}$, ${\Psi}_O$, ${\Phi}_{EO}$ and $PI_{ABS}$ were dramatically decreased at 21 day and 26 day, which reflects the relative reduction state of the photosystem II. On the other hand, the relative activities per reaction center such as ABS/RC, TRo/RC were significantly increased at 26 day. Particularly, Dio/RC and DIo/CS increased substantially under drought stress, indicating that excessive energy was consumed by heat dissipation. These results of chlorophyll a fluorescence show that the sensitivity changes photosystem II activity. Thus, according to the results, O. elatus was exhibited a strong reduction of photosynthetic activity to approximately 10% soil moisture contents, and JIP parameters could be useful indicator to monitor the physiological states of O. elatus under drought stress.

A Study on the Combustion Characteristics of Pelletized and Fluff RDF (Refuse Derived Fuel) (성형 및 비성형 폐기물 고형연료의 연소특성에 관한 연구)

  • Sanjel, Nawaraj;Gu, Jae-Hoi;Kwon, Woo-Teck;Oh, Sea Cheon
    • Applied Chemistry for Engineering
    • /
    • v.23 no.3
    • /
    • pp.333-338
    • /
    • 2012
  • To verify the utilization of fluff refuse derived fuel (RDF) as energy source, the combustion charateristic has been studied by an experimental combustion furnace under various temperatures. The characteristics of flue gas, dust and residue from fluff RDF combustion has been analyzed and compared with those of pelletized RDF. From this work, it was found that the incomplete combustion of fluff RDF was greater than that of pelletized RDF because the combustion reaction rate of fluff RDF was faster than that of pelletized RDF, and oxgen concentration in fluff RDF combustion decreased rapidly. It was also found that carbon monoxide concentration of flue gas from fluff RDF combustion increased with combustion temperature because the oxygen consumption and the incomplete combustion increased. Therefore, it is felt that the combustion operation conditions of fluff RDF should be carefully determined.

Sediment Transport Calculation Considering Cohesive Effects and Its Application to Wave-Induced Topographic Change (점착력을 고려한 표사유동 수치모델의 제안과 파랑에 의한 지형변동의 적용성 검토)

  • Cho, Yong Hwan;Nakamura, Tomoaki;Mizutani, Norimi;Lee, Kwang-Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.6
    • /
    • pp.405-411
    • /
    • 2013
  • A sediment transport calculation considering cohesive force is proposed to deal with the transport phenomena of cohesive sediment. In the proposed calculation, each sand particle is assumed to be surrounded by a thin layer of mud. The critical Shields parameter and bed-load sediment transport rate are modified to include the cohesive force acting on the sand particle. The proposed calculation is incorporated into a two-way coupled fluid-structure-sediment interaction model, and applied to wave-induced topographic change of artificial shallows. Numerical results show that an increase in the content ratio of the mud, cohesive resistance force per unit surface area and water content cause increases in the critical Shields parameter and decreases in the bed-load sediment transport rate, reducing the topographic change of the shallow without changing its trend. This suggests that mixing mud in the pores of the sand particles can reduce the topographic change of shallows.

Numerical Study on Propagation Characteristics of Tsunami Induced by Tokai, Tonankai and Nankai Massive Earthquakes (토카이, 토난카이 및 난카이 대규모 지진으로 인한 지진해일의 전파특성에 관한 수치적 연구)

  • Kawasaki, Koji;Suzuki, Kazuki;Lee, Kwang-Ho;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.6
    • /
    • pp.386-393
    • /
    • 2013
  • After the 2011 Tohoku Earthquake, it has been pointed out that Tokai, Tonankai and Nankai massive earthquakes with a magnitude of 9.0 could strike the Pacific coasts in western Japan. This study aims at investigating numerically propagation characteristics of tsunami generated by a 9.0 magnitude Tokai, Tonankai and Nankai massive earthquakes on the Pacific coasts and three major bays in Japan, Tokyo Bay, Ise Bay and Osaka Bay. It was revealed from the numerical results that the tsunami heights on the Pacific coasts for M9.0 earthquake were about twice as much as those for M8.7 earthquake and the first tsunami arrival time was faster at some areas distant from the tsunami source. Moreover, high water level in the bays was recognized to continue for a long time because of the enclosed bays.

Structural Safety Evaluation by Analysis of Pressure Variation Characteristics of Small Hydro Power Hydraulic Turbine Blades in Sewage Treatment Plant (하수처리장 소수력 수차 블레이드의 압력변화 특성 분석을 통한 구조안전성 평가)

  • Park, Yoo-Sin;Kim, Ki-Jung;Youn, Byong-Don
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.126-131
    • /
    • 2017
  • Numerical analysis using commercial CFD code was carried out to develop the drag force type vertical axis hydraulic turbine for the improvement of the production efficiency of small hydro energy at low flow velocity condition. Blade pressure changes and internal flows were analyzed according to the presence or absence of the hydraulic turbine blade holes at flow velocity of less than 1.0~3.0 m/s. According to the numerical results, the pressure and flow velocity is severly affected by the flow velocity in turbine blade with no holes, while the influence of flow velocity is comparatively decreased in turbine blade with holes. It is also found that the pressure and flow velocity on the blade surface with holes are evenly distributed with no singular location and it is believed that forming a hole in the blade may be helpful in terms of structural safety.

Characteristics of Water Soluble Fractions of Wheat Bran Treated with Various Thermal Processes (열처리 밀기울의 수용성 분획의 특징)

  • Hwang, Jae-Kwan;Kim, Chong-Tai;Cho, Sung-Ja;Kim, Chul-Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.934-938
    • /
    • 1995
  • Water soluble fractions (WSF) of wheat bran treated with thermal processes such as autoclaving, microwaving and extrusion were characterized to investigate the structural response of plant cell wall to thermal and mechanical energy. From the chemical analysis and gel filtration chromatography of WSF, gelatinization of starch was found to be the primary solubilizing mechanism of wheat bran, followed by the structural disintegration of fibrous non-starch cell wall materials. It was also found that extrusion process resulted in degrading relatively higher molecular weight non-starch polysaccharides from the cell wall. GC analysis of water soluble non-starch polysaccharides indicates that the arabinoxylan residues of cell wall are the most susceptible site to thermal treatments studied. In particular, the degrading degree of cell wall of wheat bran is the most significant for extrusion accompanying both high temperature and high shear.

  • PDF

Determination of Bromine, Arsenic, Mercury, and Selenium in Plant by Neutron Activation Analysis (방사화분석법에 의한 식물 중의 Br, As, Hg, Se의 정량)

  • Chun, Sea-Yull
    • Korean Journal of Food Science and Technology
    • /
    • v.3 no.3
    • /
    • pp.144-149
    • /
    • 1971
  • The sensitive technique of activation analysis is well suited for this study since the elements such as As, Br, and Se in tobaccoes are expected to be high concentration. As, Br, and Hg were determined by Bethge destruction method and subsequent neutron activation analysis. $^{77m}Se$ was also by non-destruction activation analysis. The quantities of the element determined in Korean tobaccoes are given as follows in ppm: As, 0.65 ppm. Hg, 0.74 ppm. Se, 1.18 ppm. Br, 7.1 ppm. From the date given it seems that Korean tobaccoes and foreign tobaccoes contained considerably high concentration of selenium and mercury.

  • PDF

Study on the Anti-inflammatory Effect and Mechanism of Prunus mume Extract Regarding NF-κB (NF-κB 조절을 통한 오매추출물의 항염효과 및 작용기작에 관한 연구)

  • Seo, Won-Sang;Oh, Han-Na;Park, Woo-Jung;Um, Sang-Young;Lee, Dae-Woo;Kang, Sang-Mo
    • KSBB Journal
    • /
    • v.29 no.1
    • /
    • pp.50-57
    • /
    • 2014
  • NF-${\kappa}B$ is a transcriptional factor which is involved in many biological processes including immunity, inflammation, and cell survival. Many investigators studied on the mechanism involved in activation of NF-${\kappa}B$ signalling pathway via ubiquitination and degradation of $I{\kappa}B$ regarding skin disease. Some specific molecules including Akt, MEK, p38 MAP Kinase, Stat3, et al. represent convergence points and key regulatory proteins in signaling pathways controlling cellular events such as growth and differentiation, energy homeostasis, and the response to stress and inflammation. Ultraviolet (UV) irradiation has many adverse effects on skin, including inflammation, alteration in the extracellular matrix, cellular senescence, apoptosis and skin cancer. Prunus mume, a naturally derived plant extract, has beneficial biological activities as blood fluidity improvement, anti-fatigue action, antioxidative and free radical scavenging activities, inhibiting the motility of Helicobacter pyolri. Previous reports on various beneficial function prompted us to investigate UVB-induced or other immunostimulated biological marker regarding P. mume extract. P. mume extract suppresses UVB-induced cyclooxygenase-2 (COX-2) expression in mouse skin epidermal JB6 P+ cells. The activation of activator protein-1 and nuclear factor-${\kappa}B$ induced by UVB was dose-dependently inhibited by P. mume extract treatment. This results suggest that P. mume extracts might be used as a potential agents for protection of inflammation or UVB induced skin damage.

Process Modeling and Optimization Studies in Drying of Current Transformers

  • Bhattacharya, Subhendu;D'Melo, Dawid;Chaudhari, Lokesh;Sharma, Ram Avatar;Swain, Sarojini
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.6
    • /
    • pp.273-277
    • /
    • 2012
  • The vacuum drying process for drying of paper in current transformers was modeled with an aim to develop an understanding of the drying mechanism involved and also to predict the water collection rates. A molecular as well as macroscopic approach was adopted for the prediction of drying rate. Ficks law of diffusion was adopted for the prediction of drying rates at macroscopic levels. A steady state and dynamic mass transfer simulation was performed. The bulk diffusion coefficient was calculated using weight loss experiments. The accuracy of the solution was a strong function of the relation developed to determine the equilibrium moisture content. The actually observed diffusion constant was also important to predict the plant water removal rate. Thermo gravimetric studies helped in calculating the diffusion constant. In addition, simulation studies revealed the formation of perpetual moisture traps (loops) inside the CT. These loops can only be broken by changing the temperature or pressure of the system. The change in temperature or pressure changes the kinetic or potential energy of the effusing vapor resulting in breaking of the loop. The cycle was developed based on this mechanism. Additionally, simulation studies also revealed that the actual mechanism of moisture diffusion in CT's is by surface jumps initiated by surface diffusion balanced against the surrounding pressure. Every subsequent step in the cycle was to break such loops. The effect of change in drying time on the electrical properties of the insulation was also assessed. The measurement of capacitance at the rated voltage and one third of the rated voltage demonstrated that the capacitance change is within the acceptance limit. Hence, the new cycle does not affect the electrical performance of the CT.