• Title/Summary/Keyword: Energy Method

Search Result 19,562, Processing Time 0.054 seconds

Method of the Laboratory Wave Generation for Two Dimensional Hydraulic Model Experiment in the Coastal Engineering Fields: Case of Random Waves (해안공학분야에서 2차원 수리모형실험을 위한 실험파 설정방법: 불규칙파 대상)

  • Lee, Jong-In;Bae, Il Rho;Kim, Young-Taek
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.6
    • /
    • pp.383-390
    • /
    • 2021
  • The experiments in coastal engineering are very complex and a lot of components should be concerned. The experience has an important role in the successful execution. Hydraulic model experiments have been improved with the development of the wave generator and the advanced measuring apparatus. The hydraulic experiments have the advantage, that is, the stability of coastal structures and the hydraulic characteristics could be observed more intuitively rather than the numerical modelings. However, different experimental results can be drawn depending on the model scale, facilities, apparatus, and experimenters. In this study, two-dimensional hydraulic experiments were performed to suggest the guide of the test wave(random wave) generation, which is the most basic and important factor for the model test. The techniques for generating the random waves with frequency energy spectrum and the range for the incident wave height [(HS)M/(HS)T = 1~1.05] were suggested. The proposed guide for the test wave generation will contribute to enhancing the reliability of the experimental results in coastal engineering.

Reaction Characteristics of Water Gas Shift Catalysts in Various Operation Conditions of Blue Hydrogen Production Using Petroleum Cokes (석유코크스 활용 블루수소생산을 위한 Water Gas Shift 촉매의 조업조건에 따른 반응특성)

  • Park, Ji Hye;Hong, Min Woo;Yi, Kwang Bok
    • Clean Technology
    • /
    • v.28 no.1
    • /
    • pp.1-8
    • /
    • 2022
  • To confirm the applicability of the water gas shift reaction for the production of high purity hydrogen for petroleum cokes, an unutilized low grade resource, Cu/ZnO/MgO/Al2O3 (CZMA), catalyst was prepared using the co-precipitation method. The prepared catalyst was analyzed using BET and H2-TPR. Catalyst reactivity tests were compared and analyzed in two cases: a single LTS reaction from syngas containing a high concentration of CO, and an LTS reaction immediately after the syngas passed through a HTS reaction without condensation of steam. Reaction characteristics in accordance with steam/CO ratio, flow rate, and temperature were confirmed under both conditions. When the converted low concentration of CO and steam were immediately injected into the LTS, the CO conversion was rather low in most conditions despite the presence of large amounts of steam. In addition, because the influence of the steam/CO ratio, temperature, and flow rate was significant, additional analysis was required to determine the optimal operating conditions. Meanwhile, carbon deposition or activity degradation of the catalyst did not appear under high CO concentration, and high CO conversion was exhibited in most cases. In conclusion, it was confirmed that when the Cu/ZnO/MgO/Al2O3 catalyst and the appropriate operating conditions were applied to the syngas composition containing a high concentration of CO, the high concentration of CO could be converted in sufficient amounts into CO2 by applying a single LTS reaction.

Evaluation of Population Exposures to PM2.5 before and after the Outbreak of COVID-19 (서울시 구로구에서 COVID-19 발생 전·후 초미세먼지(PM2.5) 농도 변화에 따른 인구집단 노출평가)

  • Kim, Dongjun;Min, Gihong;Choe, Yongtae;Shin, Junshup;Woo, Jaemin;Kim, Dongjun;Shin, Junghyun;Jo, Mansu;Sung, Kyeonghwa;Choi, Yoon-hyeong;Lee, Chaekwan;Choi, Kilyoong;Yang, Wonho
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.6
    • /
    • pp.521-529
    • /
    • 2021
  • Background: The coronavirus disease (COVID-19) has caused changes in human activity, and these changes may possibly increase or decrease exposure to fine dust (PM2.5). Therefore, it is necessary to evaluate the exposure to PM2.5 in relation to the outbreak of COVID-19. Objectives: The purpose of this study was to compare and evaluate the exposure to PM2.5 concentrations by the variation of dynamic populations before and after the outbreak of COVID-19. Methods: This study evaluated exposure to PM2.5 concentrations by changes in the dynamic population distribution in Guro-gu, Seoul, before and after the outbreak of COVID-19 between Jan and Feb, 2020. Gurogu was divided into 2,204 scale standard grids of 100 m×100 m. Hourly PM2.5 concentrations were modeled by the inverse distance weight method using 24 sensor-based air monitoring instruments. Hourly dynamic population distribution was evaluated according to gender and age using mobile phone network data and time-activity patterns. Results: Compared to before, the population exposure to PM2.5 decreased after the outbreak of COVID-19. The concentration of PM2.5 after the outbreak of COVID-19 decreased by about 41% on average. The variation of dynamic population before and after the outbreak of COVID-19 decreased by about 18% on average. Conclusions: Comparing before and after the outbreak of COVID-19, the population exposures to PM2.5 decreased by about 40%. This can be explained to suggest that changes in people's activity patterns due to the outbreak of COVID-19 resulted in a decrease in exposure to PM2.5.

Preparation of Heated Tobacco Biomass-derived Carbon Material for Supercapacitor Application (궐련형 담배 바이오매스 기반의 슈퍼커패시터용 탄소의 제조 및 응용)

  • Kim, Jiwon;Jekal, Suk;Kim, Dong Hyun;Yoon, Chang-Min
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.2
    • /
    • pp.5-15
    • /
    • 2022
  • In this study, heated tobacco biomass was prepared as an active material for supercapacitor device. Retrieved tobacco leaf from the heated tobacco was carbonized at various temperature(800/850/950℃). Carbonized tobacco leaf material synthesized at 850℃ exhibited the highest C/O ratio, indicating the finest carbon quality. In addition, polypyrrole was coated onto the carbonized leaf material for increasing the electrochemical performance via low-temperature polymerization method. As-synthesized carbonized leaf material at 850℃(CTL-850)-based electrode and polypyrrole-coated carbonized leaf material(CTL-850/PPy)-based electrode displayed outstanding specific capacitances of 100.2 and 155.3F g-1 at 1 A g-1 with opertaing window of -1.0V and 1.0V. Asymmetric supercapacitor device, assembled with CTL-850 as the negative electrode and CTL-850/PPy as the positive electrode, manifested specific capacitance of 31.1F g-1(@1 A g-1) with widened operating voltage window of 2.0V. Moreover, as-prepared asymmetric supercapacitor device was able to lighten up the RED Led (1.8V), suggesting the high capacitance and extension of operating voltage window. The result of this research may help to pave the new possibility toward preparing the effective energy storage device material recycling the biomass.

Comparative Study on Seismic Performance of Masonry Wall Strengthened by FRP Sheet or Steel-Bar Truss System (FRP 시트 및 강봉 트러스 시스템으로 보강된 조적벽의 내진성능 비교 연구)

  • Lee, Hye-Ji;Kim, Sanghee;Yang, Keun-Hyeok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.1-9
    • /
    • 2022
  • In this study, the in-plane and out-of-plane seismic performance of the masonry wall strengthened using the steel bar truss system proposed by Hwang et al. (2021a, 2021b) or using FRP sheets were compared and evaluated. The maximum strength of the masonry wall reinforced with FRP sheets for the in-plane and out-of-plane loading was 71% and 85%, respectively, of that of the non-reinforced masonry wall. Meanwhile, the maximum strength of the masonry wall reinforced with the steel bar truss system was approximately 1.8 times higher than that of the non-reinforced masonry wall. Compared with the FRP sheet method, the steel bar truss system was excellent at improving the maximum load capacity, rigidity, and energy dissipation capacity. However, in the case of a masonry wall reinforced with FRP sheets, the masonry wall was overstrengthened with the FRP sheets covering the entire masonry wall, and it is considered that the overstrengthened specimen experienced sliding failure, resulting in a lower strength than the other specimens. A follow-up study is needed to compare the seismic performance of the specimen involving only a part of the masonry wall reinforced with the FRP sheets and the specimen reinforced using the steel bar truss system.

Development of High-Sensitivity and Entry-Level Nuclide Analysis Module (고감도 보급형 핵종 분석 모듈 개발)

  • Oh, Seung-Jin;Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.515-519
    • /
    • 2022
  • In this paper, we propose the development of a high-sensitivity entry-level nuclide analysis module. The proposed measurement sensor module consists of an electronic driving circuit for nuclide analysis resolution, prototype production with nuclide analysis function, and GUI development applied to prototypes. The electronic part driving circuit for nuclide analysis resolution is divided into nuclide analysis resolution process by the electronic part driving circuit block diagram, MCU circuit design used for radiation measurement, and PC program design for Spectrum acquisition. Prototyping with nuclide analysis function is made by adding a 128×128 pixel OLED display, three buttons for operation, a Li-ion battery, and a USB-C type port for charging the battery. The GUI development department applied to the prototype develops the screen composition such as the current time, elapsed measurement time, total count, and nuclide Spectrum. To evaluate the performance of the proposed measurement sensor module, an expert witness test was conducted. As a result of the test, it was confirmed that the calculated result by applying the resolution formula to the Spectrum (FWHM@662keV) obtained using the Cs-137 standard source in the nuclide analysis device had a resolution of 17.77%. Therefore, it was confirmed that the nuclide analysis resolution method proposed in this paper produces improved performance while being cheaper than the existing commercial nuclide analysis module.

Model-based Efficiency Analysis for Photovoltaic Generation O&M: A Case Study (태양광발전 운전 및 유지보수를 위한 모델기반 효율분석: 사례연구)

  • Yu, Jung-Un;Park, Sung-Won;Son, Sung-Yong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.5
    • /
    • pp.405-412
    • /
    • 2022
  • This paper studies the method of estimating power loss and classifying the factors for improving the power generation efficiency through O&M. It is installed under various climatic conditions worldwide, operational and maintenance technologies suitable for the characteristics of the installation location are required. Existing studies related to solar power generation efficiency have been actively quantifying the impact on short-term losses by environmental factors such as high temperature, dust accumulation, precipitation, humidity, and wind speed, but analysis of the overall impact from a long-term operation perspective is limited. In this study, the potential for efficiency improvement was analyzed by re-establishing a loss classification system according to the power flow of solar power to derive a comprehensive efficiency model for long-term operation and estimating power loss through a case study for each region where climate conditions are classified. As a result of the analysis, the average annual potential for improving soiling loss was 26.9%, Death Valley 7.2%, and Seoul 3.8%. Aging losses was 6.6% in the 20th year as a cumulative. The average annual potential due to temperature loss was 2.9 % for Doha, 1.9% for Death Valley, and 0.2% for Seoul.

Development of Foundation Structure for 8MW Offshore Wind Turbine on Soft Clay Layer (점토층 지반에 설치 가능한 8MW급 해상풍력발전기 하부구조물 개발)

  • Seo, Kwang-Cheol;Choi, Ju-Seok;Park, Joo-Shin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.2
    • /
    • pp.394-401
    • /
    • 2021
  • The construction of new renewable energy facilities is steadily increasing every year. In particular, the offshore wind farm market, which has abundant development scalability and a high production coefficient, is growing rapidly. The southwest sea has the highest possible offshore wind power potential, and related projects are to be promoted. This study presents a basic design procedure by the EUROCODE and considers structural safety in the development of an effective of shore wind foundation in the clay layer. In a previous study, the wind power generator of 5MW class was the main target, but the 8MW of wind turbine generator, which meets the technical trend of the wind turbine market in the Southwest sea, was selected as the standard model. Furthermore, a foundation that fulfills the geological conditions of the Southwest sea was developed. The structural safety of this foundation was verified using finite element method. Moreover, structural safety was secured by proper reinforcement from the initial design. Based on the results of this study, structural safety check for various types of foundations is possible in the future. Additionally, specialized structural design and evaluation guidance were also established.

Grain-Based Distinct Element Modeling of Thermoshearing of Rock Fracture: DECOVALEX-2023 Task G (입자기반 개별요소모델을 이용한 암석 균열의 Thermoshearing 거동 해석: 국제공동연구 DECOVALEX-2023 Task G)

  • Jung-Wook, Park;Li, Zhuang;Jeong Seok, Yoon;Chan-Hee, Park;Changlun, Sun;Changsoo, Lee
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.568-585
    • /
    • 2022
  • In the present study, we proposed a numerical method for simulating thermally induced fracture slip using a grain-based distinct element model (GBDEM). As a part of DECOVALEX-2023, the thermo-mechanical loading test on a saw-cut rock fracture conducted at the Korea Institute of Civil Engineering and Building Technology was simulated. In the numerical model, the rock sample including a saw-cut fracture was represented as a group of random Voronoi polyhedra. Then, the coupled thermo-mechanical behavior of grains and their interfaces was calculated using 3DEC. The key concerns focused on the temperature evolution, thermally induced principal stress increment, and fracture normal and shear displacements under thermo-mechanical loading. The comparisons between laboratory experimental results and the numerical results revealed that the numerical model reasonably captured the heat transfer and heat loss characteristics of the rock specimen, the horizontal stress increment due to constrained displacement, and the progressive shear failure of the fracture. However, the onset of the fracture slip and the magnitudes of stress increment and fracture displacement showed discrepancies between the numerical and experimental results. We expect the numerical model to be enhanced by continuing collaboration and interaction with other research teams of DECOVALEX-2023 Task G and validated in further study.

Analysis of Distributed Computational Loads in Large-scale AC/DC Power System using Real-Time EMT Simulation (대규모 AC/DC 전력 시스템 실시간 EMP 시뮬레이션의 부하 분산 연구)

  • In Kwon, Park;Yi, Zhong Hu;Yi, Zhang;Hyun Keun, Ku;Yong Han, Kwon
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.8 no.2
    • /
    • pp.159-179
    • /
    • 2022
  • Often a network becomes complex, and multiple entities would get in charge of managing part of the whole network. An example is a utility grid. While the entire grid would go under a single utility company's responsibility, the network is often split into multiple subsections. Subsequently, each subsection would be given as the responsibility area to the corresponding sub-organization in the utility company. The issue of how to make subsystems of adequate size and minimum number of interconnections between subsystems becomes more critical, especially in real-time simulations. Because the computation capability limit of a single computation unit, regardless of whether it is a high-speed conventional CPU core or an FPGA computational engine, it comes with a maximum limit that can be completed within a given amount of execution time. The issue becomes worsened in real time simulation, in which the computation needs to be in precise synchronization with the real-world clock. When the subject of the computation allows for a longer execution time, i.e., a larger time step size, a larger portion of the network can be put on a computation unit. This translates into a larger margin of the difference between the worst and the best. In other words, even though the worst (or the largest) computational burden is orders of magnitude larger than the best (or the smallest) computational burden, all the necessary computation can still be completed within the given amount of time. However, the requirement of real-time makes the margin much smaller. In other words, the difference between the worst and the best should be as small as possible in order to ensure the even distribution of the computational load. Besides, data exchange/communication is essential in parallel computation, affecting the overall performance. However, the exchange of data takes time. Therefore, the corresponding consideration needs to be with the computational load distribution among multiple calculation units. If it turns out in a satisfactory way, such distribution will raise the possibility of completing the necessary computation in a given amount of time, which might come down in the level of microsecond order. This paper presents an effective way to split a given electrical network, according to multiple criteria, for the purpose of distributing the entire computational load into a set of even (or close to even) sized computational loads. Based on the proposed system splitting method, heavy computation burdens of large-scale electrical networks can be distributed to multiple calculation units, such as an RTDS real time simulator, achieving either more efficient usage of the calculation units, a reduction of the necessary size of the simulation time step, or both.