• Title/Summary/Keyword: Energy Materials

Search Result 11,285, Processing Time 0.038 seconds

Evaluation of Fine-Particle Removal Performance of Novel ESP with Highly Durable Chargers and Collectors (고내구성 하전 및 집진 방식 전기집진기의 미세입자 제거 특성)

  • Kim, Hak-Joon;Han, Bang-Woo;Hong, Won-Seok;Shin, Wan-Ho;Song, Dong-Keun;Jung, Sang-Hyeon;Kim, Yong-Jin;Oh, Won-Suk;Hwang, Kyu-Dong;Yoo, Seong-Yeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.4
    • /
    • pp.423-428
    • /
    • 2010
  • Electrostatic precipitators (ESPs) used currently in industries for removing fine particles from semiconductors have to be made of expensive anticorrosive metallic materials in order to maintain their particle-removal performance. To satisfy the economical demands of industries, a novel ESP was developed; in this ESP, the charger is made of carbon fibers and collection plates consist of PET films among which an aluminum sheet is inserted. The ESP was evaluated by changing the voltages applied to the chargers and collection plates, flow rates, and number of charging channels. KCl particles with mean diameters of 100 nm were used, and a scanning mobility particle sizer was used to measure the changes in particle number concentrations upstream and downstream of the ESP. The experimental results showed that more than 90% of the particles were removed by using the ESP containing ionizers with nine channels and 65-mm collection plates at $500\;m^3/hr$ when voltages of 7 kV and 10 kV were applied to the ionizers and collection plates, respectively.

Synthesis of Porous Cu-ZnO Composite Sphere and CO Oxidation Property (기공성 Cu-ZnO 복합 구형 산화물의 합성 및 CO 산화반응 특성)

  • Park, Jung-Nam;Hwang, Seong-Hee;Jin, Mingshi;Shon, Jeong-Kuk;Kwon, Sun-Sang;Boo, Jin-Hyo;Kim, Ji-Man
    • Applied Chemistry for Engineering
    • /
    • v.21 no.3
    • /
    • pp.328-332
    • /
    • 2010
  • In this study, porous ZnO sphere and Cu-ZnO composite were synthesized by coprecipitation method in diethylene glycol solvent. The physicochemical properties of as-prepared composite materials were characterized by SEM, XRD, $N_2$-sorption and $H_2$-TPR. A series of porous Cu-ZnO with different Cu contents (0, 6.6, 21.3, 36.4, 54.6, 77.8 wt%) was investigated for CO oxidation activity in a fixed bed reactor system. With increasing Cu content in Cu-ZnO the surface area and micropore volume of Cu-ZnO are decreased and Cu (36.4 wt%)-ZnO shows higher activity for CO oxidation compared to the others.

Energy Harvesting Characteristics of Interdigitated (IDT) Electrode Pattern Embedded Piezoelectric Energy Harvester (IDT 전극 패턴 임베디드 압전 에너지 하베스터의 특성)

  • Lee, Min-seon;Kim, Chang-Il;Yun, Ji-sun;Park, Woon Ik;Hong, Youn-Woo;Paik, Jong Hoo;Cho, Jeong Ho;Park, Yong-Ho;Jang, Yong-Ho;Choi, Beom-Jin;Jeong, Young-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.9
    • /
    • pp.581-588
    • /
    • 2016
  • Piezoelectric thick films of a soft $Pb(Zr,Ti)O_3$ (PZT) based commercial material were produced by a conventional tape casting method. Thereafter, the interdigitated (IDT) Ag-Pd electrode pattern was printed on the $25{\mu}m$ thick piezoelectric film at room temperature. Co-firing of the 10-layer laminated piezoelectric thick films was conducted at $1,100^{\circ}C$ and $1,150^{\circ}C$ for 1 h, respectively. Piezoelectric cantilever energy harvesters were successfully fabricated using the IDT electrode pattern embedded piezoelectric laminates for 3-3 operation mode. Their energy harvesting characteristics were investigated with an excitation of 120 Hz and 1 g under various resistive loads (ranging from $10k{\Omega}$ to $200k{\Omega}$). A parabolic increase of voltage and a linear decrease of current were shown with an increase of resistive load for all the energy harvesters. In particular, a high output power of 3.64 mW at $100k{\Omega}$ was obtained from the energy harvester (sintered at $1,150^{\circ}C$).

Synthesis of Li-doped NiO and its application of thermoelectric gas sensor (Li 도핑된 NiO 합성 및 열전식 수소센서에의 적용)

  • Han, Chi-Hwan;Han, Sang-Do;Kim, Byung-Kwon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.2
    • /
    • pp.136-141
    • /
    • 2005
  • Li-doped NiO was synthesized by molten salt method. $LiNO_3$-LiOH flux was used as a source for Li doping. $NiCl_2$ was added to the molten Li flux and then processed to make the Li-doped NiO material. Li:Ni ratios were maintained from 5:1 to 30:1 during the synthetic procedure and the Li doping amount of synthesized materials were found between 0.086-0.190 as a Li ion to Ni ion ratio. Li doping did not change the basic cubic structural characteristics of NiO as evidenced by XRD studies, however the lattice parameter decreased from 0.41769nm in pure NiO to 0.41271nm as Li doping amount increased. Hydrogen gas sensors were fabricated using these materials as thick films on alumina substrates. The half surface of each sensor was coated with the Pt catalyst. The sensor when exposed to the hydrogen gas blended in air, heated up the catalytic surface leaving rest half surface (without catalyst) cold. The thermoelectric voltage thus built up along the hot and cold surface of the Li-doped NiO made the basis for detecting hydrogen gas. The linearity of the voltage signal vs $H_2$ concentration was checked up to 4% of $H_2$ in air (as higher concentrations above 4.65% are explosive in air) using Li doped NiO of Li ion/Ni ion=0.111 as the sensor material. The response time T90 and the recovery time RT90 were less than 25 sec. There was minimum interference of other gases and hence $H_2$ gas can easily be detected.

Thin Film (La0.7Sr0.3)0.95MnO3-δ Fabricated by Pulsed Laser Deposition and Its Application as a Solid Oxide Fuel Cell Cathode for Low-Temperature Operation

  • Noh, Ho-Sung;Son, Ji-Won;Lee, Heon;Kim, Hae-Ryoung;Lee, Jong-Ho;Lee, Hae-Weon
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.1
    • /
    • pp.75-81
    • /
    • 2010
  • The feasibility of using the thin film technology in utilizing lanthanum strontium manganite (LSM) for a solid oxide fuel cell (SOFC) cathode in a low-temperature regime is investigated in this study. Thin film LSM cathodes were fabricated using pulsed laser deposition (PLD) on anode-supported SOFCs with yttria-stabilized zirconia (YSZ) electrolytes. Although cells with a 1 ${\mu}m$-thick LSM cathode showed poor low-temperature cell performance compared to that of a cell with a bulk-processed cathode due to the lack of a triple-phase boundary length, the cell with 200 nm-thick gadolinia-doped ceria (GDC) inserted between the LSM and YSZ showed enhanced performance and more stable operation characteristics in a comparison of a cell without a GDC layer. We postulate that the GDC layer likely improved the cathode adhesion, therefore contributing to the improvement of the cell performance instead of serving as an interfacial reaction buffer.

Recent Progress in Luminescent Lanthanide Complexes for Advanced Photonics Applications

  • Kim, Hwan-Kyu;Oh, Jae-Buem;Baek, Nam-Seob;Roh, Soo-Gyun;Nah, Min-Kook;Kim, Yong-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.2
    • /
    • pp.201-214
    • /
    • 2005
  • We have designed and developed novel luminescent lanthanide complexes for advanced photonics applications. Lanthanide(III) ions (Ln$^{3+}$) were encapsulated by the luminescent ligands such as metalloporphyrins and naphthalenes. The energy levels of the luminescent ligands were tailored to maintain the effective energy transfer process from luminescent ligands to Ln$^{3+}$ ions for getting a higher optical amplification gain. Also, key parameters for emission enhancement and efficient energy transfer pathways for the sensitization of Ln$^{3+}$ ions by luminescent ligands were investigated. Furthermore, to enhance the optophysical properties of novel luminescent Ln$^{3+}$ complexes, aryl ether-functionalized dendrons as photon antennas have been incorporated into luminescent Ln$^{3+}$ complexes, yielding novel Ln(III)-cored dendrimer complex. The novel Ln(III)-cored dendrimer complex has much higher PL intensity than the corresponding simple complex, due to the efficient site-isolation effect. In this article, we will deal with recent progress in the synthesis and photophysical studies of inert and stable luminescent Ln$^{3+}$ complexes for advanced photonics applications. Also, our review will include the exploratory investigation of the key parameters for emission enhancement and the effective energy transfer pathways from luminescent ligands to Ln$^{3+}$ ions with Ln(III)-chelated prototype complexes.

Preparation and Characterization of Homogeneous Hydroxyapatite Sphere (균일한 Hydroxyapatite Sphere 제조 및 특성분석)

  • Lee, Kang Huk;Shin, Dong Geun;Kwon, Woo Teck;Kim, Hyungsun;Kim, Hee Rae;Kim, Younghee;Kim, Soo Ryong
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.3
    • /
    • pp.145-149
    • /
    • 2014
  • A hydroxyapatite microsphere was prepared using a spray-drying method. The change in the shape as a function of the slurry concentration and the change in the degree of shrinkage according to the heat-treatment temperatures were observed. To obtain biomaterials with improved bio-stability, $CaHPO_4{\cdot}2H_2O$ and $Ca(OH)_2$ were mixed at a ratio of 6 : 4 and then ball-milled to synthesize hydroxyapatite. The hydroxyapatite microsphere was prepared using 30 wt% ~ 80 wt% hydroxyapatite slurry by a spray-drying method. For concentrations lower than 50 wt% or higher than 80 wt%, doughnut-shaped microspheres were produced. However, perfect microspheres were produced when using slurry concentrations of 50 wt% ~ 70 wt%. A dense microstructure was observed after a heat treatment at temperatures higher than $1100^{\circ}C$ and the size was reduced by 24.3% at these temperatures.

Particle Morphology Change and Different Experimental Condition Analysis during Composites Fabrication Process by Conventional Ball Mill with Discrete Element Method(DEM) Simulation (전동볼밀을 이용한 금속기반 복합재 제조공정에서 분쇄매체차이에 대한 입자형상변화와 DEM 시뮬레이션 해석)

  • Ichinkhorloo, Batchuluun;Bor, Amgalan;Uyanga, Batjargal;Lee, Jehyun;Choi, Heekyu
    • Korean Journal of Materials Research
    • /
    • v.26 no.11
    • /
    • pp.611-622
    • /
    • 2016
  • Particle morphology change and different experimental condition analysis during composite fabrication process by traditional ball milling with discrete element method (DEM) simulation were investigated. A simulation of the three dimensional motion of balls in a traditional ball mill for research on the grinding mechanism was carried out by DEM simulation. We studied the motion of the balls, the ball behavior energy and velocity; the forces acting on the balls were calculated using traditional ball milling as simulated by DEM. The effect of the operational variables such as the rotational speed, ball material and size on the flow velocity, collision force and total impact energy were analyzed. The results showed that increased rotation speed with interaction impact energy between balls and balls, balls and pots and walls and balls. The rotation speed increases with an increase of the impact energy. Experiments were conducted to quantify the grinding performance under the same conditions. Furthermore, the results showed that ball motion affects the particle morphology, which changed from irregular type to plate type with increasing rotation speed. The evolution was also found to depend on the impact energy increase of the grinding media. These findings are useful to understand and optimize the particle motion and grinding behavior of traditional ball mills.

Chemical Vapor Deposition of Tantalum Carbide from TaCl5-C3H6-Ar-H2 System

  • Kim, Daejong;Jeong, Sang Min;Yoon, Soon Gil;Woo, Chang Hyun;Kim, Joung Il;Lee, Hyun-Geun;Park, Ji Yeon;Kim, Weon-Ju
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.6
    • /
    • pp.597-603
    • /
    • 2016
  • Tantalum carbide, which is one of the ultra-high temperature ceramics, was deposited on graphite by low pressure chemical vapor deposition from a $TaCl_5-C_3H_6-Ar-H_2$ mixture. To maintain a constant $TaCl_5/C_3H_6$ ratio during the deposition process, $TaCl_5$ powders were continuously fed into the sublimation chamber using a screw-driven feeder. Sublimation behavior of $TaCl_5$ powder was measured by thermogravimetric analysis. TaC coatings have various phases such as $Ta+{\alpha}-Ta_2C$, ${\alpha}-Ta_2C+TaC_{1-x}$, and $TaC_{1-x}$ depending on the powder feeding methods, the $C_3H_6/TaCl_5$ ratio, and the deposition temperatures. Near-stoichiometric TaC was obtained by optimizing the deposition parameters. Phase compositions were analyzed by XRD, XPS, and Raman analysis.

Effect of Radiation Heat Transfer on the Control of Temperature Gradient in the Induction Heating Furnace for Growing Single Crystals (전자기 유도가열식 단결정 성장로의 온도 구배제어에 있어 복사열 전달의 효과)

  • Park, Tae-Yong;Shin, Yun-Ji;Ha, Minh-Tan;Bae, Si-Young;Lim, Young-Soo;Jeong, Seong-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.6
    • /
    • pp.522-527
    • /
    • 2019
  • In order to fabricate high-quality SiC substrates for power electronic devices, various single crystal growing methods were prepared. These include the physical vapor transport (PVT) and top seeded solution growth (TSSG) methods. All the suggested SiC growth methods generally use induction-heating furnaces. The temperature distribution in this system can be easily adjusted by changing the hot-zone design. Moreover, precise temperature control in the induction-heating furnace is favorably required to grow a high-quality crystal. Therefore, in this study, we analyzed the heat transfer in these furnaces to grow SiC crystals. As the growth temperature of SiC crystals is very high, we evaluated the effect of radiation heat transfer on the temperature distribution in induction-heating furnaces. Based on our simulation results, a heat transfer strategy that controls the radiation heat transfer was suggested to obtain the optimal temperature distribution in the PVT and TSSG methods.