Browse > Article

Synthesis of Porous Cu-ZnO Composite Sphere and CO Oxidation Property  

Park, Jung-Nam (Department of Chemistry, BK21 School of Chemical Materials Science, Department of Energy Science and SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University)
Hwang, Seong-Hee (Department of Chemistry, BK21 School of Chemical Materials Science, Department of Energy Science and SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University)
Jin, Mingshi (Department of Chemistry, BK21 School of Chemical Materials Science, Department of Energy Science and SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University)
Shon, Jeong-Kuk (Department of Chemistry, BK21 School of Chemical Materials Science, Department of Energy Science and SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University)
Kwon, Sun-Sang (Department of Chemistry, BK21 School of Chemical Materials Science, Department of Energy Science and SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University)
Boo, Jin-Hyo (Department of Chemistry, BK21 School of Chemical Materials Science, Department of Energy Science and SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University)
Kim, Ji-Man (Department of Chemistry, BK21 School of Chemical Materials Science, Department of Energy Science and SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University)
Publication Information
Applied Chemistry for Engineering / v.21, no.3, 2010 , pp. 328-332 More about this Journal
Abstract
In this study, porous ZnO sphere and Cu-ZnO composite were synthesized by coprecipitation method in diethylene glycol solvent. The physicochemical properties of as-prepared composite materials were characterized by SEM, XRD, $N_2$-sorption and $H_2$-TPR. A series of porous Cu-ZnO with different Cu contents (0, 6.6, 21.3, 36.4, 54.6, 77.8 wt%) was investigated for CO oxidation activity in a fixed bed reactor system. With increasing Cu content in Cu-ZnO the surface area and micropore volume of Cu-ZnO are decreased and Cu (36.4 wt%)-ZnO shows higher activity for CO oxidation compared to the others.
Keywords
nano material; ZnO sphere; Cu-ZnO composite; catalytic application; CO oxidation;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 D. Wang, T. Xie, Q. Peng, and Y. Li, J. Am. Chem. Soc., 130, 4016 (2008).   DOI   ScienceOn
2 B. Lucas, A. El Amrani, A. Moliton, and M. Dilhan, Superlatt. Microstruct., 42, 357 (2007).   DOI   ScienceOn
3 R. G. S. Pala, W. Tang, M. M. Sushchikh, J.-N. Park, A. J. Forman, G. Wu, A. Kleiman -Shwarsctein, J. P. Zhang, E. W. McFarland, and H. Metiu, J. Catal., 266, 50 (2009).   DOI   ScienceOn
4 N. Uekawa, S. Iahii, T. Kojima, and K. Kakegawa, Mater. Lett., 61, 1729 (2007).   DOI   ScienceOn
5 F. Xu, P. Zhang, A. Navrotsky, Z.-Y. Yuan, T.-Z. Ren, M. Halasa, and B.-L. Su, Chem. Mater., 19, 5680 (2007).   DOI   ScienceOn
6 T. Shishido, M. Yamamoto, D. Li, Y. Tian, H. Morioka, M. Honda, T. Sano, and K. Takehira, Appl. Catal. A: Gen., 303, 62 (2006).   DOI   ScienceOn
7 U. R. Pillai and S. Deevi, Appl. Catal. B: Environ., 65, 110 (2006).   DOI   ScienceOn
8 C.-S. Chen, J.-H. You, J.-H. Lin, C.-R. Chen, and K.-M. Lin, Catal. Commun., 9, 1230 (2008).   DOI   ScienceOn
9 L.-C. Wang, Y.-M. Liu, M. Chen, Y. Cao, H.-Y. He, G.-S. Wu, W.-L. Dai, and K.-N. Fan, J. Catal., 246, 193 (2007).   DOI   ScienceOn
10 J. Bao, Z. Liu, Y. Zhang, and N. Tsubaki, Catal. Commun., 9, 913 (2008).   DOI   ScienceOn
11 G. Xiong, L. Luo, C. Li, and X. Yang, Energ. Fuel., 23, 1342 (2009).   DOI   ScienceOn
12 B. T. Holland, C. F. Blanford, T. Do, and A. Stein, Chem. Mater., 11, 795 (1999).   DOI   ScienceOn
13 S. Kaluza, M. K. Schroter, R. N. d'Alnoncourt, T. Reinecke, and M. Muhler, Adv. Funct. Mater., 18, 3670 (2008).   DOI   ScienceOn
14 Q. Sun, Natural Gas Conversion Vii, X. Bao, and Y. Xu, 147, 397 Elsevier Science Bv, Amsterdam (2004).
15 S. Cho, S.-H. Jung, and K.-H. Lee, J. Phys. Chem. C, 112, 12769 (2008).   DOI   ScienceOn
16 D. Jezequel, J. Guenot, N. Jouini, and F. Fievet, J. Mater. Res., 10, 77 (1995).   DOI   ScienceOn
17 R. Kaur, A. V. Singh, K. Sehrawat, N. C. Mehra, and R. M. Mehra, J. Non-Crystal. Solids, 352, 2565 (2006).   DOI   ScienceOn
18 C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, Nano Lett., 7, 1003 (2007).   DOI   ScienceOn
19 H.-W. Ra, K.-S. Choi, J.-H. Kim, Y.-B. Hahn, and Y.-H. Im, Small, 4, 1105 (2008).   DOI   ScienceOn
20 A. Umar, A. Al-Hajry, Y. B. Hahn, and D. H. Kim, Electrochim. Acta, 54, 5358 (2009).   DOI   ScienceOn
21 H. Tuysuz, M. Comotti, and F. Schuth, Chem. Commun., 4022 (2008).
22 S. J. Park and Y. S. Park, J. Korean Ind. Eng. Chem., 19, 624 (2008).
23 S.-J. Park, M.-H. Cho, and S.-H. Kwon, J. Korean Ind. Eng. Chem., 16, 737 (2005).
24 Y. Ren, Z. Ma, L. Qian, S. Dai, H. He, and P. G. Bruce, Catal. Lett., 131, 146 (2009).   DOI   ScienceOn
25 P. Djinovic, J. Batista, J. Levec, and A. Pintar, Appl. Catal. A: Gen., 364, 156 (2009).   DOI   ScienceOn
26 C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, and J. S. Beck, Nature, 359, 710 (1992).   DOI
27 H. J. Park, S. H. Park, J.-H. Yim, J. M. Sohn, and Y.-K. Park, J. Korean Ind. Eng. Chem., 20, 1 (2009).