• Title/Summary/Keyword: Energy Element

Search Result 3,393, Processing Time 0.036 seconds

Spatial Free Vibration and Stability Analysis of Thin-Walled Arches with Variable Curvature (곡률이 변하는 박벽 아치의 3차원 자유진동 및 좌굴해석)

  • 서광진;민병철;김문영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.169-176
    • /
    • 1999
  • An improved formulation for spatial stability md free vibration of thin-walled curved beams with variable curvature and non-symmetric cross sections are presented based on the displacement field considering the second order terms of finite semitangential rotations. By introducing Vlasov's assumptions, the total potential energy is derived from the principle of linearized virtual work for a continuum. In this formulation, all displacement parameters and the warping function are defined at the centroid axis so that the coupled terms of bending and torsion are added to the elastic strain energy. Also, the potential energy due to initial stress resultants is consistently derived corresponding to the semitangential rotation and moment. The cubic Hermitian polynomials are utilized as shape functions for development of the curved thin-walled beam element having eight degrees of freedom. In order to illustrate the accuracy and practical usefulness of this study, . numerical solutions for free vibration of arches are presented and compared with resells of other researchers and solutions analyzed by the ABAQUS's shell element.

  • PDF

Finite Element Analysis of Electrical Double Layers near Triple Contact Lines

  • Kang Kwan Hyoung;Kang In Seok;Lee Choung Mook
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.491-494
    • /
    • 2002
  • To assess the electrostatic interaction of surfaces at the triple contact line, the electrostatic field is analyzed by using the finite element method. The Helmholtz free energy is used as a functional which should be minimized under an equilibrium condition. The numerical results are compared with the nonlinear analytical solution for a two-dimensional charged interface and linear solution for a wedge shaped geometry, which shows fairly good agreement. The method is applied to the analysis of electrostatic influence on the contact angle on a charged substrate. The excess free energy found to increase drastically as the contact angle approaches to zero. This excess free energy Plays an opposite role to the Primary electrocapillary effect, as the contact angle gets smaller. This enables an alternative explanation for the contact-angle saturation phenomenon occurring in electrical control of surface tension and contact angle.

  • PDF

Time- Dependent FEM Simulation of Dilution Control of Laser Cladding by Adaptive Mesh Method

  • Kim, Jae-Do;Peng, Yun
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.177-187
    • /
    • 2000
  • Dilution is an important factor which influences the properties of clad layer. In this paper the change of dilution during laser cladding and the control of dilution are simulated by a finite element method. The adaptive mesh method is adopted for the time-dependent finite element method computation so that the shape of melt pool can be well represented. The situation of the width control of melt pool is also simulated, which indicates that the dilution can be controlled if the width of melt pool is controlled. Computational results indicate that if a line energy (input energy per unit distance) remains constant the dilution will increase with time, especially at the beginning. Simulation results show that it is possible to control dilution in a certain range if the line energy decreases with time. Experiment of Nd: YAG laser cladding with wire feeding is performed. Experiment results coincide well with the FEM results.

  • PDF

Development of PFFEM, the new vibroacoustic analysis system in medium-to-high frequency ranges (중고주파에서의 새로운 진동해석시스템, PFFEM 개발연구)

  • Seo, Seong-Hoon;Hong, Suk-Yoon;Park, Do-Hyun;Kil, Hyun-Gwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.325-333
    • /
    • 2000
  • To predict vibrational energy density and intensity of partitioned complex system structures in medium-to-high frequency ranges, Power Flow Finite Element Method(PFFEM) programs for the plate elements are developed. The flexural, longitudinal and shear waves in plates are formulated and the joint element equations for multi-couped plates are fully developed. Also the wave transmission approach has been introduced to cover the energy transmission and reflection at the joint plate elements. Using the developed PFFEM program the energy density and intensity of the submarine and automobile shape structures are predicted with a harmonic point force at a single frequency.

  • PDF

Optimal vibration energy harvesting from nonprismatic piezolaminated beam

  • Biswal, Alok R;Roy, Tarapada;Behera, Rabindra K
    • Smart Structures and Systems
    • /
    • v.19 no.4
    • /
    • pp.403-413
    • /
    • 2017
  • The present article encompasses a nonlinear finite element (FE) and genetic algorithm (GA) based optimal vibration energy harvesting from nonprismatic piezo-laminated cantilever beams. Three cases of cross section profiles (such as linear, parabolic and cubic) are modelled to analyse the geometric nonlinear effects on the output responses such as displacement, voltage, and power. The simultaneous effects of taper ratios (such as breadth and height taper) on the output power are also studied. The FE based nonlinear dynamic equation of motion has been solved by an implicit integration method (i.e., Newmark method in conjunction with the Newton-Raphson method). Besides this, a real coded GA based constrained optimization scheme has also been proposed to determine the best set of design variables for optimal harvesting of power within the safe limits of beam stress and PZT breakdown voltage.

Numerical and theoretical modelling of low velocity impact on UHPC panels

  • Prem, Prabhat R.;Verma, Mohit;Ramachandra Murthy, A.;Rajasankar, J.;Bharatkumar, B.H.
    • Structural Engineering and Mechanics
    • /
    • v.63 no.2
    • /
    • pp.207-215
    • /
    • 2017
  • The paper presents the studies carried out on low velocity impact of Ultra high performance concrete (UHPC) panels of size $350{\times}350{\times}10mm^3$ and $350{\times}350{\times}15mm^3$. The panels are cast with 2 and 2.5% micro steel fibre and compared with UHPC without fiber. The panels are subjected to low velocity impact, by a drop-weight hemispherical impactor, at three different energy levels of 10, 15 and 20 J. The impact force obtained from the experiments are compared with numerically obtained results using finite element method, theoretically by energy balance approach and empirically by nonlinear multi-genetic programming. The predictions by these models are found to be in good coherence with the experimental results.

The Evaluation of Performance of C-11 Radio Isotope Gas Target using Finite Element Method (FEM을 이용한 C-11 동위원소 기체표적의 성능평가)

  • Oh, Hwan-Sup;Hur, Min-Goo;Park, Sang-Pil;Jung, Hyo-Jin
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.3
    • /
    • pp.24-31
    • /
    • 2006
  • The energy degrader is the most fragile part of the security of a target, has been newly designed to improve the performance of the gas target. Also, the numerical analysis of the heat movement and mechanical movement during the operation of the target has been accomplished. The heat analysis and structure analysis which are using the cooling water flow and pressure in the energy degrader and the finite element analysis program, has been considered with the heat movement and mechanical movement according to the current capacity of proton beam which determines the production yield of the radioactive isotope. Also the possible use range has been determined and at the same time the most suitable running condition according to the current capacity of proton beam has been suggested.

Upper Bound Analysis of Dynamic Buckling Phenomenon of Circular Tubes Considering Strain Rate Effect (변형률 속도를 고려한 원형 튜브의 동적 좌굴 현상의 상계 해석에 관한 연구)

  • Park, Chung-Hee;Ko, Youn-Ki;Huh, Hoon
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.711-716
    • /
    • 2008
  • A circular tube undergoes bucking behavior when it is subjected to axial loading. An upper bound analysis can be an attractive approach to predict the buckling load and energy absorption efficiently. The upper bound analysis obtains the load or energy absorption by means of assumption of the kinematically admissible velocity fields. In order to obtain an accurate solution, kinematically admissible velocity fields should be defined by considering many factors such as geometrical parameters, dynamic effect, etc. In this study, experiments and finite element analyses are carried out for circular tubes with various dimensions and loading conditions. As a result, the kinematically admissible velocity field is newly proposed in order to consider various dimensions and the strain rate effect of material. The upper bound analysis with the suggested velocity field accurately estimates the mean load and energy absorption obtained from results of experiment and finite element analysis.

  • PDF

Evaluation of Fracture Characteristics on Rubber Specimens (고무시편의 파괴특성 평가)

  • Kim, Jung-Yup;Kim, Wan-Doo;Han, Seung-Woo;Kim, Chun-Hyu
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.395-401
    • /
    • 2000
  • Rubber is used extensively in many industries because of its large reversible elastic deformation, excellent damping and energy absorption characteristics, and wide availability. Therefore it becomes very important to evaluate fracture characteristics of rubber. Tearing energy and J-integral have been used as fracture parameters of rubber. The J-integral values for pure shear and single edge specimen are calculated by finite element analysis and compare with theoretical values. Finite element analysis is performed by ABAQUS.

  • PDF

Determination of the location of fixture elements using the strain energy (변형 에너지를 고려한 치구 위치의 선정)

  • 기동우;이건우;정진평
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.548-554
    • /
    • 1996
  • A new method to locate modular fixtures using an optimization technique is proposed. The optimal fixture arrangement is derived to minimize the elastic deformation of a workpiece. That is, a fixture arrangement is regarded better if it minimized the elastic deformation of the workpiece while fixing a workpart of course. In this approach, the workpiece is projected into two dimensional domain to simplify the 3-dimensional fixture arrangement problem into 2-dimensional one. Thus the problem is reduced to find the optimal positions of one horizontal clamp and three locators which minimize the total deformation of the workpiece and the design variables are the location of the contact points between the boundary of the workpiece and the 4-fixels. The Genetic Algorithm is used for the optimization by mapping each design variables to a gene of a chromosome. The fitness value is the total strain energy of the workpiece calculated by the fin element analysis.

  • PDF