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Abstract

To assess the electrostatic interaction of surfaces at the triple contact line, the electrostatic field is analyzed by using the finite element
method. The Helmholtz free energy is used as a functional which should be minimized under a1 equilibrium condition. The numerical
results are compared with the nonlinear analytical solution for a two-dimensional charged interface and linear solution for a wedge
shaped geometry, which shows fairly good agreement. The method is applied to the analysis of electrostatic influence on the contact
angle on a charged substrate. The excess free energy found to increase drastically as the contact angle approaches to zero. This excess
free energy plays an opposite role to the primary electrocapillary effect, as the contact angle gets smaller. This enables an alternative
explanation for the contact-angle saturation phenomenon occurring in electrical control of surface tension and contact angle.

1. Introduction

The electrical control of wettability of liquid on a solid dielectric
substrate, which is called electrowetting or in a broader sense as elec-
trocapillarity, draws renewed attention nowadays in fabricating inte-
grated microfluidic devices such as biochips, microreactors, and pTAS
(micro total analysis system) (see [1] for review).

The electrowetting has been mainly understood as a kind of the
Lippmann phenomenon which is a direct consequence of electrical
polarization of the interface [1-3]. The macroscopic energy balance
generates the following modified version of the Young equation in
consideration of the electrical effect which predicts the contact angle
(6 ) for a externally applied electrical potential (7 )
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Here, 6, is the contact angle without the external electric field, and
y is the interfacial tension between liquid inside the droplet and the
surrounding fluid, 4 the thickness of the dielectric layer beneath the
droplet, and & the electrical permittivity of the dielectric material.

Equation (1) enables an explanation for the near parabolic behavior
of the contact angle with respect to the applied electrical potential.
There is, however, deficiency in (1) to explain the occurrence of the
interfacial instability and saturation of contact angle beyond a certain
critical value of electrical potential. Many investigators have suggested
their interpretations on the mechanisms to induce such an instability
and contact-angle saturation[1,4-6]. None of them is satisfactorily vali-
dated to be reliable.

One of the obvious shortcomings of (1), as noted by Digilov{7], is
that the effect of the line tension is not considered. The line tension
results from the excess free energy generated at the juncture of three
interfaces, i.¢., liquid-solid, fluid-solid and fluid-liquid. The concept of
the line tension is introduced, in a macroscopic analysis concerning the
contact angle, to represent the contribution of the excess free energy
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change due to three-phase interaction near the triple contact line (TPL).
Digilov{7] introduced a modified Young equation considering the con-
tribution from the line tension effect, together with the Lippmann phe-
nomena. For a practical assessment of the line-tension effect, the mag-
nitude of the line tension should be known, which cannot be predicted
by the macroscopic analysis such as of Digilov[7]. For the analytical
prediction on the magnitude of the line tension, the microscopic analy-
sis on the interaction between species near TPL is necessary. In the
present investigation, the effect of excess free energy of the charged
wedged-shaped geomefry on the contact angle 1s analyzed. It is as-
sumed that the length scale for significant shape change is much greater
than the screening length, Under this assumption, the deformation of
interface shape due to electrostatic field can be neglected. The free
energy is then calculated as a function of the contact angle for straight
contact lines.

2, Analysis

Two immiscible fluids ionize the substrate differently depending on
their chemical properties. The surface-charge density on each region is
denoted by o, and o, (see Fig. 1). Here, subscripts I and 2 denote,
respectively, the fluids inside a droplet and the surrounding fluid, while
subscript 3 denotes the quantity associated with the substrate. The sur-
face-charge density at the fluid-fluid interface is denoted by o, -

The total free energy of the system (G, ) is the sum of mechanical
part (G, , ) and electrostatic part (G, ) and written as shown below
[10-12].

Goen = }/12st12 + (V2 *Y13)Jdr+g(pz - pl)_[hz(r)dra

G, = [o(S)pS)ds - [draslie(r. Vol +U(p))

(2a,b)
where y represents the surface tension, dr the substrate surface
element, 4S the surface element at each interface, S, the surface
element at fluid-fluid interface, U(¢)=2n"kT{cosh(Bep)~1],
@ the electrical potential, B = ze/kT, ¢ the electric permittivity,
k the Boltzmann constant, 7 the absolute temperature, z the
valence of ions, e the electron charge, and »~ the number density
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Fig. 1 Geometry of a droplet on a charged substrate in the prox-
imity of contact line. Interface is charged due to adsorption of
charged species.

of ion at the bulk region. The terms in (2) are the surface energy associ-
ated with the area of the droplet surface exposed to the bulk fluid, the
energy of contact of the two fluids with solid substrate, the gravitational
energy arising from the density difference between interior and exterior
fluids, and the electrostatic contributions for specified surface charge
distribution [10].

Far from the TPL, the electrical contribution to the free energy per
unit surface area becomes

J=22 2- 20050 P2 4 B sinh P |, 3)
B 2 2

where @, represent the electrical potential at interfaces, and
K =ele. - z n’ the inverse square of the Debye screening
length In the present mvestlgatlon only the electrostatic contribution to
the excess free energy is considered. Other contributions to the line
tension, such as due to the short range forces[13], are beyond the scope
of the present investigation. The total free energy of the system can be
alternatively expressed by employing the contribution due to the
line-tension (7 ), as follows

G Goo + G

tor T ™ mec
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Here, L is the length of TPL, and becomes 27R for an axially
symmetric droplet having base radius of R. G, represents the
electrical free energy of the system calculated by the unperturbed elec-
trostatic potential at far distance from the TPL. This term is dependent
on the interfacial areas, but not on the specific geometry of a droplet.

We non-dimensionalize the variables by using the screening length,
and characteristic thermal energy (1/ 8 =T/ ze) as

~ ~ - O, ~ K, 32
X =KX V=K, <p,=ﬂ<p,,a,:ﬂ L, G, = LA

£,K, £,
)

Then, the electrostatic free-energy components can be rewritten as
shown below. The tilde is dropped for the sake of convenience.

G. = [6(S)p(S)ds - [drablse(r, |V o[ +ExU]} 6

= §28K‘|:2 2cosh—(p—f+ @, sinh %i}ds' (6b)
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Here, £=¢/¢,, €=x/x,,and Ulp]=coshp-1.

The mechanical part of the free energy is not directly concerned
with the electrical potential. Therefore, during the solution procedure
for electrical potential, only the electrical part is considered. The poten-
tial distribution is analyzed by using the finite element method. It is
natural to choose the above free energy as the functional to be mini-
mized. For each discretized element, the potential function ¢ can
be represented as a linear combination of shape function N(x, y),ie.

0© =¥ o.N,(x,y) Q)

i=1

where s is the number of nodes in an element and ¢, are the dis-
crete nodal potentials. In the present investigation, the six-node trian-
gular elements with the Lagrange polynomial are used. (For details, on
the finite element formulation, see Appendix ).

3. Results and Discussion

Figure 2 shows the electrical potential for a charged infinite planar
interface case. In the figure, £ denotes the normal distance from the
interface. This one-dimensional solution is obtained by applying ap-
propriate boundary conditions for the identical program used in the
two-dimensional analysis. Here, k, =1, and & =0.2. The two
cases inwhich ¢ is 8 and 32 are shown in the figure. The results are
compared with the linear and nonlinear solution of the Pois-
son-Boltzmann equation (see Appendix 1). The numerical solutions
show a good agreement with the fully nonlinear analytical solutions.
The linear solution, however, tends to overestimate the peak potential
values for ¢ =32 . These are mainly because the linearization of the
source term in the Poisson-Boltzmann has an effect to reduce the
charge density of field ions. For example, the linearization of charge
density, i.e., approximating sinh¢ as ¢, when ¢ =1, has an effect
to reduce the charge density by 17.5% with respect to the exact value.
For high potential values, the error becomes greater.

Figure 3 shows the electrical potential at the TPL for different con-
tact angles. In this case too, the screening lengths are assumed to be the
same for the two fluids, and £, = 4. The linear analysis of the Pois-
son-Boltzmann equation for the electrical potential near the TPL[10]

Numerical (5,=8)
— — — - Linear(c,=8)

e Nonlinear (6,=8)

Numerical (G,=32)

\ — — = - Linear (0,=32)
I Py e Nonlinear (6,=32)

Fig. 2 Validation of numerical results for a charged planar inter-
face: x, =x,, £€=0.2
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Fig. 3 Potential at contact line for different contact angle:
c,=0,=1, 0,=2, K =K,, €=4.

gives the following potential at TPL, when x, =x,,

1 o, +0,+0
IO I 2 m ®
(P(P’e)‘(z) (E-1)-0/7+1]

As shown in the figure, the present results agree very well with the
linear solution when the contact angle is greater than 30°. At a smaller
contact angle than about 30°, the deviation becomes greater as the con-
tact angle gets smaller. This may be because, alike the case in Fig. 2,
the effect of field charge is underestimated due to the linearization.

Figure 4 shows the line tension which is related with the excess
free energy as (4) for different contact angles, for the same conditions
considered in Fig. 3. As the contact angle decreases, the excess free
energy increases abruptly. This means there is a tendency to resist
against the contact of the two interfaces.

If the free energy minimum principle under the thermodynamic
equilibrium condition is applied to (4) through the method of varia-
tional calculus, the following formula for the equilibrium contact angle
is obtained,

cosf = cos6, +PECE—%?)- (9)

Here, PECE represents the contribution due to the primary electro-
capillary effect which becomes Lel? /(yd) for the electrowetting
case. As shown in Fig. 4, the line tension has positive values and gets
greater as the radius of droplet approaches to zero. Therefore, its influ-
ence becomes amplified when the size of a droplet becomes smaller,
which is customary among the line-tension effect. Moreover, in the
case of small contact angle, the line tension due to surface charge has in
general opposite role compared to the primary electrocapillary effect.
This can results in the saturation of contact angle under a high electric
field, when the contact angle is controlled by electrical means.

4, Concluding Remarks
The computed results by using the finite element method show a

good agreement with the analytical solutions. The excess free energy
becomes very large when the contact angle becomes small. When the
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Fig. 4 Electrostatic contribution to the line tension for different
contactangle: o, =0, =1, 0,=2, K=K, £=4.

contact angle is small, excess free energy has opposite sign to the term
representing the conventional electrocapillary effect. Therefore, the
usual electrocapillary effect of decreasing the contact angle can be
reduced. Furthermore, the contact angle can be saturated due to signifi-
cantly amplified line-tension effect for small contact angle. The
line-tension effect becomes more influential for droplets of smaller
size.

In the present investigation, the effect of deformation of interface is
not considered. The interface will be deformed when the pressure near
the interface becomes greater. In this case, the electric field can be
significantly distorted due to interfacial deformation. The consideration
of shape deformation is necessary in the future analysis.
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Appendix I. Formulation for finite element analysis

Substituting the approximated potential into the free energy func-
tional, one can obtain the discretized functional for an element such as

Gel(e)((p(e))zi(p, J'O'Nidl“(” —%22(0,»% J.EVN, VNld «

i=1 e i=1 j=1 Qv

Y[RV (@)N,d

i=l g

(Al)
This can be rewritten in a matrix form as

6.0 =l B} ¥ [sho}- @Y o}

where
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R = jO'N,.dF“)’

r(e)

S, = [EVN,-VN,dQ" (A3abc)
Qle)

Q,= [er7N,dQ® -
Q(E)

The total electrical contribution to the free energy of the domain is
the sum of the free energy of the individual element, that is
G, = z G,,' - This can be represented in a matrix form as

G, -3 oV R+ Y Shol- U@ T lo) A9

At an equilibrium condition, G, should be minimized with re-
spect to electrostatic potential, that is, 3G, /9@, =0 , for
i=12,...,m. This requirement results in the following matrix equa-
tion

[sKo}=1{rR}-{0}, (AS)
where

0= [R?Uj(@)N,dQ" = [&K* sinh(p,)N,dQ' - (A6)

Q(U) Q(e]
Appendix I1. Electrical double layer at a charged fluid interface
Far from the triple contact line in Fig. 1, the following Pois-

son-Boltzmann equation which accounts for the Coulombic interaction
between electrical charge is satisfied.

2
90 _ o T\ 792 for each fluidj=1,2.  (BI)
0&? '\ ze kT

The boundary conditions which should be satisfied by the electrical
potentials are as follows:

) ¢,=9, at £=0, (B2a)
. P P

1) 82%—8'8—?26'"’ at =0 (B2b)
lll) (pj :O’ at gzioo . (BZC)

The following relation holds for each region,
2

3(ap) _,309°0 3¢ _10(30) @y
ax | 2¢ 9E 07" 9ET 20¢| 9E

Introducing (B1) to (B3b), integrating both side with respect to ¢,
applying the boundary condition in (B2c), and then one obtains.

(aa%] =2—;—z(coshﬂ(pj—l)- (B4)

By using the relation that cosh 2x —1 = 2sinh” x, the above equa-
tion also becomes
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99 _ —Zfl—sinhg?—‘, 9P, = 2&sinh&- (BSab)
o B 2 o B 2

Applying (BS) to the interfacial boundary condition (B2b) with (B2a),

then one obtains the following nonlinear algebraic equation for the
interface potential ¢, ,

3erc +E,K sinhﬁL:G : (B6)
ﬁ 1™1 272 2 m

Integration of (A6a,b) yields the following potential distribution for
each region.

eﬁrp]/z _ eﬁ“’"z +1-|'(€ﬁ(’0'“l —l)e_K”gi ) (B7)
eho’? _I_l_(eﬁ(p,lz _1)e—x,!€|

The solution of the linearized Poisson-Boltzmann equation for this
case can be obtained as follows, without difficulty.

9, =9, (B3a)
(81K1 +&,K, )(Pl =0, (B8b)
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