• 제목/요약/키워드: Energy Efficiency Ventilation

검색결과 129건 처리시간 0.025초

농촌주택표준설계도 에너지효율등급평가 및 설계변수에 따른 에너지소요량 변화에 관한 연구 (A Study on Energy Requirement Variation According to Energy Efficiency Rating Evaluation and Design Variable of Standard Design of Rural Houses)

  • 박미란;류연수;최정만;서혜원
    • 한국농촌건축학회논문집
    • /
    • 제19권2호
    • /
    • pp.9-16
    • /
    • 2017
  • The study analyzed the heat losses and the building energy efficiency grade by the energy simulation using the ENERGY# and ECO2 programs for the three types of Standard design of rural houses. It was calculated the energy efficiency rating by the ECO2 program for the rural housing standard design, and the energy demand and the energy consumption by each factor were compared and analyzed. And it analyzed energy consumption by element of each house by ENERGY # program. As a result, first in the evaluation of the energy efficiency grade of buildings by the ECO2 program, the rating for primary energy requirement for the housing newly built by the standard design of rural house is expected to range from 2 to 4 with 189.3 to $238.7kWh/m^2.a$. Second, the energy loss of each part of standard design of rural housing occurs in the order of ventilation 39%, window 33%, outer wall 14%, roof 9%, bottom 5%, and energy loss through ventilation and window occurs more than 70%. Third, the most beneficial effects on the energy efficiency grade is obtained the lowest grade of all three types by 2 when the lowering of the window and door heat transmission rate and the lowering of the light density, and the heat exchange ventilation device is not installed. Fourth, in the standard design of rural housing, the energy demand is occupied by heating > hot water > lighting order, and the order of the weight is changed in order of heating > lighting > ventilation > hot water. Fifth, building energy efficiency assessment system needs to establish policy for fixing rural housing energy as a practical device to ensure energy performance and quality.

초고층 공동주택의 환기효율 개선에 관한 연구 (A Study on the Improvement of Ventilation Effectiveness in High-rise Apartment Buildings)

  • 박진철
    • 한국태양에너지학회 논문집
    • /
    • 제26권2호
    • /
    • pp.87-94
    • /
    • 2006
  • The efficiency of ventilation system is one of the most important issues of designing ventilation in high-rise apartment buildings. The purpose of this study is to analyze the ventilation efficiency of ventilation system by experimental study using CO2 gas method. The results of this paper can be summarized as follows; (1) An appropriate ventilation including opening planning, mechanical and hybrid system are required. (2) The supply diffuser of ventilation system should be located near the contaminant source. (3) The return grill should be located along with supply diffuser for proper ventilation. and the return grill should be located near or right above the contaminant source. (4) However, the supply location right above the contaminant source has to be avoided. and the supply diffuser should be installed in module with return grill increase ventilation effectiveness.

CO2 제거용 흡착제를 이용한 스마트 환기시스템 개발 연구 (Study on development of Smart ventilation system using a adsorbent for the removal of CO2)

  • 신재란;문성호;김재강;최진식;임윤희;박병현;이주열
    • 한국응용과학기술학회지
    • /
    • 제32권3호
    • /
    • pp.578-582
    • /
    • 2015
  • In this study, We evaluated the efficiency of the smart ventilation system being developed at the test-bed(KCL). Smart ventilation system improve the indoor air quality by absorbing carbon dioxide. It is reducing the infusion of outside air can be reduced to minimum energy consumption. To evaluate the energy savings and carbon dioxide removal efficiency. It was more effective when working with air conditioning and ventilation system at the same time.

주거공간 내 IT기술 적용 에너지 저감 창호형 환기시스템 연구 (A Study on Window Type Ventilation System Using IT Technology for Energy Saving in Housing Space)

  • 이은혜;김용성;지충구
    • 한국주거학회논문집
    • /
    • 제24권2호
    • /
    • pp.61-68
    • /
    • 2013
  • This study has the purpose to adapt IT technology on Window Type Ventilation System for the energy saving and providing of user-centered comfortable environment. This is Derived a look at the case of the window type ventilation system and researched its IT technology for reducing energy applied to the Green Home. This indicates a solution for the established Window Type Ventilation System which can not be satisfied with user's requirement by proposing Window Type Ventilation System applied to IT technology that makes it control the intelligent, combined indoor environment system and providing information. Also, it shows energy saving efficiency of Window Type Ventilation System applied to IT technology based on the model study, analysing the performance of air-conditioning and ventilation energy saving through the experiment to compare with the established Window Type Ventilation System. The result of this study has the significance that it suggests an alternative for energy saving of housing space.

자연환기시스템의 현장 적용성 평가-열환경,에너지부분 (The Performance Field-Application of Natural Ventilation System)

  • 최동혁;최경석;강재식;이승언
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.689-694
    • /
    • 2009
  • On account of Indoor Air Quality(IAQ) deterioration by reason of high isulation and air tightness for energy saving, absence of energy efficiency ventilation system development that can be domestic existing window system, the cost increase and the energy addition loss by mechanical ventilation for IAQ improvement the ventilation obligation making design standard was prepared by a social and technical background and the necessity. In this study, open module type natural ventilation window system for energy saving included a fixed and continuous quantity ventilation was developed. The purpose that indoor thermal comfort environment evaluate of indoor resident.

  • PDF

대단면 석회석 광산 갱도 내 국부선풍기 승압력 및 통기효과 비교 연구 (A Comparative Study on the Auxiliary Fan Pressure and the Ventilation Efficiency in Large-opening Limestone Mine Airways)

  • 박동준;강현호;이창우
    • 터널과지하공간
    • /
    • 제27권1호
    • /
    • pp.1-11
    • /
    • 2017
  • 국내 지하 석회석 광산은 대부분 대단면 갱도로 개발되고 있으며 갱내통기는 주요 선풍기에 의한 통기방식보다는 자연통기 및 국부통기에 의존하고 있다. 국부통기는 국부선풍기와 풍관을 이용한 급배기 통기방식을 적용하고 있으나 대단면 갱도 특성과 갱내 굴진 운반장비의 디젤화에 따라 소요통기량이 대폭 증대하여 통기의 효율 및 경제성 확보가 주요과제로 대두되고 있다. 본 연구에서는 대단면 갱내 작업장 국부통기를 위한 선풍기 용량 최적화를 위하여 축류식 및 프로펠러 선풍기를 개발하여 갱내 승압력 및 통기효과를 비교 분석함을 목적으로 한다.

역사적 건축물의 에너지 효율 향상을 위한 계획기법 -서양의 연구동향 및 사례를 중심으로- (Technical Measures for Improving Energy Efficiency in Historic Buildings -Focused on Researches and Case Studies of the West-)

  • 김태영
    • 한국농촌건축학회논문집
    • /
    • 제20권1호
    • /
    • pp.69-76
    • /
    • 2018
  • This study is to research technical measures for improving energy efficiency in the conservation and reuse of historic buildings focused on the recent research trends and case studies of the west. These measures are broadly classified into three types, the passive measures for saving energy and increasing comfort, the most cost-effective energy saving strategies, and the renewable energy sources. Firstly, the passive measures are divided into the elements and systems. The passive elements are awnings and overhanging eaves, porches, shutters, storm windows and doors, and shade trees. There are also the natural ventilation systems such as the historic transoms, roofs and attics to improve airflow and cross ventilation to either distribute, or exhaust heat. Secondly, the most cost-effective energy efficiency strategies are the interior insulation, airtightness and moisture protection, and the thermal quality improvement of windows. The energy efficiency solutions of modern buildings are the capillary-active interior insulation, the airtightness and moisture protection of interior walls and openings, and the integration of the original historic window into the triple glazing. Beyond the three actions, the additional strategies are the heat recovery ventilation, and the illumination system. Thirdly, there are photovoltaic(PV) and solar thermal energy, wind energy, hydropower, biomass, and geothermal energy in the renewable energy sources. These energy systems work effectively but it is vital to consider its visual effect on the external appearance of the building.

주거용 건물 유형별 자연환기시스템의 최적 설계 및 해석 (An Optimized Design and Simulation Analysis of Natural Ventilation Window System classified by Apartment type)

  • 최경석;정영선;강재식;이승언;정영용
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.685-688
    • /
    • 2009
  • On account of Indoor Air Quality(IAQ) deterioration by reason of high insulation and air tightness for energy saving, absence of energy efficiency ventilation system development that can be domestic existing window system, the cost increase and the energy addition loss by mechanical ventilation for IAQ improvement, the ventilation obligation making design standard was prepared by a social and technical background and the necessity. In this study, an optimized design and simulation Analysis of natural ventilation window system classified by Apartment type was evaluated by CFD Computational analysis.

  • PDF

건축물에너지효율등급 기밀시험이 등급에 미치는 영향분석 (Analysis on Energy Demand Resulting From the Change in Window Area & Installation of Interior Exterior Blinds)

  • 김대원;정광섭;김영일;남아리새;주정경
    • 에너지공학
    • /
    • 제23권1호
    • /
    • pp.40-45
    • /
    • 2014
  • 주거시설에서 환기횟수 0.7회 적용은 실내공기질 향상과 거주자의 쾌적성을 높이고자 100세대 이상은 의무적으로 적용하고 있다. 건축물에너지효율등급에서는 환기횟수를 기준으로한 기밀시험을 실시 하여 그결과 값을 효율등급결과치에 반영함으로서 창호주변의 정밀시공을 유도하고 침기로 인해 손실되는 에너지절감을 꾀하고 있다. 건축물엔지효율등급 현장실사 결과 환기횟수가 0.6~0.71까지 나타났으며 그차이가 에너지 절감량에 크게 영향을 미치는 것으로 나타났다. 유럽의 패시브 하우스 기준이 0.6회 이하의 기밀을 요구하고 있고 우리나라도 2017년 패시브하우스, 2025년 제로하우스를 목표로 하고 있어 비주거 건물의 기밀진단의 의무확대와 고기밀 건물에 대한 연구와 시공방법이 시급한 실정이다.

$CO_2$ 직접 제거를 통한 다중이용시설의 에너지 절감 및 경제적 효과에 대한 실험적 연구 (Experimental studies of energy savings and economic effects by direct removal of carbon dioxide in the multi-use facility)

  • 김요섭;이주열;최진식;신재란;임윤희;박병현;김윤신
    • 한국응용과학기술학회지
    • /
    • 제31권3호
    • /
    • pp.466-471
    • /
    • 2014
  • It is important to develop the smart ventilation system in order to minimize a building energy consumption using ventilation. In this study, We evaluated the efficiency of the smart ventilation system being developed at the nursery. To evaluate the energy savings and carbon dioxide removal efficiency, two kinds of experimental conditions were compared. First, air conditioner and Smart HVAC system were operated. Second, air conditioner was operating and external air was put into the inside by rate of air circulation. It was more effective when working with air conditioning and ventilation system at the same time. If the Smart HVAC system is applied in a multi-use facility, indoor air quality will be comfortable and the social cost will be reduced.