• 제목/요약/키워드: Energy Dissipation Rate

검색결과 180건 처리시간 0.025초

저레이놀즈수 k-$\varepsilon$난류모형 개선에 관한 연구 (A Study on the Development of Low Reynolds Number k-$\varepsilon$ Turbulence Model)

  • 김명호;신종근;최영돈
    • 대한기계학회논문집
    • /
    • 제16권10호
    • /
    • pp.1940-1954
    • /
    • 1992
  • 본 연구에서는 가공기 자체의 파라메터와 성능에 관한 연구로서 출력 에너지 가 서로 다른 가공기를 사용하여 SUS 304 스테인리스 시험편을 관통, 절단하면서 출력 에너지와 최대 출력을 비교하여 보고, 시험편 관통시 주파수와 출력 에너지와의 관계, 시험편 관통시 응융 금속 제거량에 의한 절단 속도의 예측, 서로 다른 출력의 가공에 있어서 슬릿 절단 폭, 커프 폭, 드로스 길이, 절단면의 표면 거칠기 등을 비교하여 출 력차에 따른 가공 특성을 고찰하였다.

재순환유동 예측을 위한 κ-ε 난류모델 개선에 대한 연구 (A STUDY ON THE IMPROVEMENT OF κ-εTURBULENCE MODEL FOR PREDICTION OF THE RECIRCULATION FLOW)

  • 이영모;김철완
    • 한국전산유체공학회지
    • /
    • 제21권2호
    • /
    • pp.12-24
    • /
    • 2016
  • The standard ${\kappa}-{\varepsilon}$ and realizable ${\kappa}-{\varepsilon}$ models are adopted to improve the prediction performance on the recirculating flow. In this paper, the backward facing step flows are used to assess the prediction performance of the recirculation zone. The model constants of turbulence model are obtained by the experimental results and they have a different value according to the flow. In the case of an isotropic flow situation, decaying of turbulent kinetic energy should follow a power law behavior. In accordance with the power law, the coefficients for the dissipation rate of turbulent kinetic energy are not universal. Also, the other coefficients as well as the dissipation coefficient are not constant. As a result, a suitable coefficients can be varied according to each of the flow. The changes of flow over the backward facing step in accordance with model constants of the ${\kappa}-{\varepsilon}$ models show that the reattachment length is dependent on the growth rate(${\lambda}$) and the ${\kappa}-{\varepsilon}$ models can be improved the prediction performance by changing the model constants about the recirculating flow. In addition, it was investigated for the curvature correction effect of the ${\kappa}-{\varepsilon}$ models in the recirculating flow. Overall, the curvature corrected ${\kappa}-{\varepsilon}$ models showed an excellent prediction performance.

曲率修正2方程式모델을 利용한 2次元 再循環 亂流 流動構造의 硏究 (Study on the turbulent structure for two-dimensional recirculating flows by curvature dependent 2-equation model)

  • 박상우;정명균
    • 대한기계학회논문집
    • /
    • 제11권3호
    • /
    • pp.444-453
    • /
    • 1987
  • 본 연구에서는 난류구조에 대한 유선곡률의 영향을 명확히 반영하는 적절한 곡률수정 2-방정식모델을 개발하고자 한다. 이 연구에서 제안된 모델의 타당성은 다 음의 2차원 재순환유동에 대한 실험결과와 계산결과의 비교를 통해서 입증될 것이다. (1) Moss와 Bake에 의하여 맥동열선 풍속계로 측정된 두꺼운 수직벽주위의 유동` (2) 레이저 도플러 속도계로 Fraser와 Siddig에 의해 측정된 얇은 수직벽유동` (3)맥동열 선 풍속계로 Eaton이 실험한 후면벽유동` (4)맥동열선 풍속계로 Moss와 Baker가 측정 한 전면벽유동. 새로운 곡률수정 2-방정식모델은 2장에서 설명되고 있으며, 3장에서 는 경계조건과 수치계산 과정이 간단이 기술되어 있다. 그 뒤에 4장에는 계산결과와 실험치에대한 비교검토가 설명되어 있고 마지막으로 5장에서는 본 연구에 대한 결론을 맺고 있다.

1.29 GHz 펄스파로 산출한 대기경계층 고도 (Atmospheric Boundary Layer Height Estimated based on 1.29 GHz Pulse Wave)

  • 서지우;권병혁;이경훈;이건명
    • 한국전자통신학회논문지
    • /
    • 제18권6호
    • /
    • pp.1049-1056
    • /
    • 2023
  • 대기경계층 고도는 지면의 가열로 인해 발생한 난류가 경계층 내의 열, 수증기 등을 혼합하면서 생성되는 꼭대기로 일반적으로 열역학적 방법을 통해 결정한다. 윈드프로파일러는 대기 중으로 보낸 신호의 산란 정보로 대기의 정보를 산출한다. 윈드프로파일러 관측으로 대기경계층 깊이를 결정하기 위해 난류 성분의 스펙트럼 및 난류운동에너지 소산율, 굴절지수구조계수를 산출하는 방법을 제시하였다. 라디오존데 자료를 기반으로 산출한 온위와 비습의 연직 분포 특징과 비교하여 윈드프로파일러 산출물 기반의 대기경계층 고도 결정 방법이 매우 유용한 것으로 평가되었다.

Investigations of Mixing Time Scales in a Baffled Circular Tank with a Surface Aerator

  • Kumar, Bimlesh;Patel, Ajey;Rao, Achanta
    • Environmental Engineering Research
    • /
    • 제16권1호
    • /
    • pp.47-51
    • /
    • 2011
  • The oxygen transfer rate is a parameter that characterizes the gas-liquid mass transfer in surface aerators. Gas-liquid transfer mechanisms in surface aeration tanks depend on two different extreme lengths of time; namely, macromixing and micromixing. Small scale mixing close to the molecular level is referred to as micromixing; whereas, macromixing refers to mixing on a large scale. Using experimental data and numerical simulations, macro- and micro-scale parameters describing the two extreme time scales were investigated. A scale up equation to simulate the oxygen transfer rate with micromixing times was developed in geometrically similar baffled surface aerators.

3 차원 유한요소해석을 이용한 자유경계조건에서의 두께 1.7 mm DP780 고강도 강판의 저 속 충격 특성 분석 (A Study on Low Velocity Impact Characteristics of DP 780 High Strength Steel Sheet with Thickness of 1.7 mm on the Free Boundary Condition Using Three-Dimensional Finite Element Analysis)

  • 안동규;남경흠;성대용;양동열;임지호
    • 한국정밀공학회지
    • /
    • 제27권11호
    • /
    • pp.46-56
    • /
    • 2010
  • The present research works investigated into the low velocity impact characteristics of DP 780 high strength steel sheet with 1.7 mm in thickness subjected to free boundary condition using three-dimensional finite element analysis. Finite element analysis was carried out via ABAQUS explicit code. Hyper-elastic model and the damping factor were introduced to improve an accuracy of the FE analysis. An appropriate FE model was obtained via the comparison of the results of the FE analyses and those of the impact tests. The influence of the impact energy and nose diameter of the impact head on the force-deflection curves, impact time, absorption characteristics of the impact energy, deformation behaviours, and stress-strain distributions was quantitatively examined using the results of FE analysis. The results of the FE analysis showed that the absorption rate of impact energy lies in the range of the 70.7-77.5 %. In addition, it was noted that the absorption rate of impact energy decreases when the impact energy increases and the nose diameter of the impact head decreases. The local deformation of the impacted region was rapidly increased when the impact energy was larger than 76.2 J and the nose diameter was 20 mm. A critical impact energy, which occur the instability of the DP780, was estimated using the relationship between the plastic strain and the impact energy. Finally, characteristics of the plastic energy dissipation and the strain energy density were discussed.

Thermographic analysis of failure for different rock types under uniaxial loading

  • Kirmaci, Alper;Erkayaoglu, Mustafa
    • Geomechanics and Engineering
    • /
    • 제23권6호
    • /
    • pp.503-512
    • /
    • 2020
  • Mining activities focus on the production of mineral resources for energy generation and raw material requirements worldwide and it is a known fact that shallow reserves become scarce. For this reason, exploration of new resources proceeds consistently to meet the increasing energy and raw material demand of industrial activities. Rock mechanics has a vital role in underground mining and surface mining. Devices and instruments used in laboratory testing to determine rock mechanics related parameters might have limited sensing capability of the failure behavior. However, methodologies such as, thermal cameras, digital speckle correlation method and acoustic emission might enable to investigate the initial crack formation in detail. Regarding this, in this study, thermographic analysis was performed to analyze the failure behaviors of different types of rock specimens during uniaxial compressive strength experiments. The energy dissipation profiles of different types of rocks were characterized by the temperature difference recorded with an infrared thermal camera during experiments. The temperature increase at the failure moment was detected as 4.45℃ and 9.58℃ for andesite and gneiss-schist specimens, respectively. Higher temperature increase was observed with respect to higher UCS value. Besides, a temperature decreases of about 0.5-0.6℃ was recorded during the experiments of the marble specimens. The temperature change on the specimen is related to release of radiation energy. As a result of the porosity tests, it was observed that increase in the porosity rate from 5.65% to 20.97% can be associated to higher radiation energy released, from 12.68 kJ to 297.18 kJ.

Seismic behavior of steel and sisal fiber reinforced beam-column joint under cyclic loading

  • S.M. Kavitha;G. Venkatesan;Siva Avudaiappan;Chunwei Zhang
    • Structural Engineering and Mechanics
    • /
    • 제88권5호
    • /
    • pp.481-492
    • /
    • 2023
  • The past earthquakes revealed the importance of the design of moment-resisting reinforced concrete framed structures with ductile behavior. Due to seismic activity, failures in framed structures are widespread in beam-column joints. Hence, the joints must be designed to possess sufficient strength and stiffness. This paper investigates the effects of fibers on the ductility of hybrid fiber reinforced self-compacting concrete (HFRSCC) when subjected to seismic actions; overcoming bottlenecks at the beam-column joints has been studied by adding low modulus sisal fiber and high modulus steel fiber. For this, the optimized dose of hooked end steel fiber content (1.5%) was kept constant, and the sisal fiber content was varied at the rate of 0.1%, up to 0.3%. The seismic performance parameters, such as load-displacement behavior, ductility, energy absorption capacity, stiffness degradation, and energy dissipation capacity, were studied. The ductility factor and the cumulative energy dissipation capacity of the hybrid fiber (steel fiber, 1.5% and sisal fiber, 0.2%) added beam-column joint specimen is 100% and 121% greater than the control specimen, respectively. And also the stiffness of the hybrid fiber reinforced specimen is 100% higher than the control specimen. Thus, the test results showed that adding hybrid fibers instead of mono fibers could significantly enhance the seismic performance parameters. Therefore, the hybrid fiber reinforced concrete with 1.5% steel and 0.2% sisal fiber can be effectively used to design structures in seismic-prone areas.

사각공간내에서의 부분바닥가열에 의한 자연대류에 관한 연구 (Natural Convection in a Rectangular Enclosure with Localized Heating from Below)

  • 한화택
    • 설비공학논문집
    • /
    • 제7권2호
    • /
    • pp.287-297
    • /
    • 1995
  • In this study, the geometry consists of a two-dimensional rectangular enclosure with localized heating from below. The size and the location of the heater on the floor has been varied, and one of the vertical walls remains at a low temperature simulating a cold window. The governing equations for momentum, energy and continuity, which are coupled with turbulent equations have been solved using a finite volume method. A low Reynolds number $k-{\varepsilon}$ model has been incorporated to solve the turbulent kinetic energy and the dissipation rate. The heat transfer characteristics and the thermal environmental characteristics of the room have been obtained for various system parameters in a room with a partially heated floor.

  • PDF

두 곡면벽제트로부터 형성된 합성제트에서의 레이놀즈응력 전달 (Reynolds Stress Transport in a Merged Jet Arising from Two Opposing urved Wall Jets)

  • 류호선;박승오
    • 대한기계학회논문집
    • /
    • 제17권2호
    • /
    • pp.416-425
    • /
    • 1993
  • To investigate the characteristics of the merged jet arising from the interaction of two opposing curved wall jets over a circular cylinder in still air, mean velocity, Reynolds stresses, triple moments and integral length scale were measured using hot-wire anenometry. The turbulent kinetic energy and shear stress budget were evaluated using the measured data. The variations of the Reynolds stresses, the triple moment and integral length scale are severe in the interaction region. The pressure diffusion terms are found to be very large when compared the other terms in the interaction region. The distributions of the Reynolds stress and the triple moment in the similar region are found to be similar to those of conventional plane jets.