DOI QR코드

DOI QR Code

Atmospheric Boundary Layer Height Estimated based on 1.29 GHz Pulse Wave

1.29 GHz 펄스파로 산출한 대기경계층 고도

  • 서지우 (부경대학교 지구환경시스템과학부 환경대기과학전공) ;
  • 권병혁 (부경대학교 지구환경시스템과학부) ;
  • 이경훈 (부경대학교 지구환경시스템과학부 환경대기과학전공) ;
  • 이건명 (부경대학교 지구환경시스템과학부 환경대기과학전공)
  • Received : 2023.10.27
  • Accepted : 2023.12.27
  • Published : 2023.12.31

Abstract

The height of the atmospheric boundary layer indicates the peak developed when turbulence is generated by mixing heat and water vapor, and is generally determined through thermodynamic methods. Wind profilers produce atmospheric information from the scattering of signals sent into the atmosphere. A method for making the spectrum of turbulent components, turbulent kinetic energy dissipation rate, and refractive index structure coefficient was presented to determine the atmospheric boundary layer depth. Compared with the vertical distribution characteristics of potential temperature and specific humidity based on radiosonde data, the determination method of the atmospheric boundary layer height from wind profiler output was evaluated as very useful.

대기경계층 고도는 지면의 가열로 인해 발생한 난류가 경계층 내의 열, 수증기 등을 혼합하면서 생성되는 꼭대기로 일반적으로 열역학적 방법을 통해 결정한다. 윈드프로파일러는 대기 중으로 보낸 신호의 산란 정보로 대기의 정보를 산출한다. 윈드프로파일러 관측으로 대기경계층 깊이를 결정하기 위해 난류 성분의 스펙트럼 및 난류운동에너지 소산율, 굴절지수구조계수를 산출하는 방법을 제시하였다. 라디오존데 자료를 기반으로 산출한 온위와 비습의 연직 분포 특징과 비교하여 윈드프로파일러 산출물 기반의 대기경계층 고도 결정 방법이 매우 유용한 것으로 평가되었다.

Keywords

Acknowledgement

이 연구는 기상청 기상레이더센터 R&D "국가레이더 통합 활용기술 개발 사업"의 "레이더 기반 위험기상 예측기술 개발(KMA2021-03122)" 지원으로 수행되었습니다.

References

  1. R. B. Stull, An introduction to boundary layer meteorology. Dordrecht: Springer Science & Business Media, 1988.
  2. A. Philibert, M. Lothon, and J. Amestoy, "CASTOR: a convective boundary layer height estimation algorithm from UHF wind profiler data," Atmospheric Measurement Techniques, vol. 2023, 2023, pp. 1-28.
  3. B. H. Kwon, B. BeNech, and D. Lambert, "Structure of the marine atmospheric boundary layer over an oceanic thermal front: SEMAPHORE experiment," Journal of Geophysical Research, vol. 103, no. C11, 1998, pp. 25,159-25,180.
  4. K. Lee, B. Kwon, and H. Yoon, "Evaluation of Wind Speed Depending on Pulse Resolution of UHF Wind Profiler Radar," J. of the Korea Insitute of Electronic Communication Sciences, vol. 16, no. 3, 2021, pp. 429-436.
  5. K. Lee and B. Kwon, "Raw Spectrum Analysis of operated UHF-Wind Profiler Radar in South Korea," J. of the Korea Insitute of Electronic Communication Sciences, vol. 17, no. 5, 2022, pp. 767-774.
  6. K. Lee, B. Kwon, and H. Yoon, "UHF Wind Profiler Calibration Using Radar Constant," J. of the Korea Insitute of Electronic Communication Sciences, vol. 15, no. 5, 2020, pp. 819-826.
  7. A. N. Kolmogorov, "Equations of turbulent motion in an incompressible fluid," Dokl. Akad. Nauk SSSR, vol. 30, 1941, pp. 299-303.
  8. A. B. White, C. J. Senff, and R. M. Banta, "A comparison of mixing depths observed by ground-based wind profilers and an airborne lidar," J. Atmos. Ocean Technol., vol. 16, no. 5, 1999, pp. 584-590. https://doi.org/10.1175/1520-0426(1999)016<0584:ACOMDO>2.0.CO;2
  9. E. E. Gossard and R. G. Strauch, Radar observation of clear air and clouds. New York: Elsevier, 1983.
  10. K. McCaffrey, L. Bianco, and J. M. Wilczak, "Improved observations of turbulence dissipation rates from wind profiling radars," Atmospheric Measurement Techniques, vol. 10, no. 7, 2017, pp. 2,595-2,611.
  11. S. Fukao, M. D. Yamanaka, and N. Ao, "Seasonal variability of vertical eddy diffusivity in the middle atmosphere: 1. Three year observations by the middle and upper atmosphere radar," Journal of Geophysical Research, vol. 99, no. D9, 1994, pp. 18,973-18,987.
  12. W. K. Hocking, "Measurement of turbulent energy dissipation rates in the middle atmosphere by radar techniques: A review," Radio Science, vol. 20, no. 6, 1985, pp. 1,403-1,422.
  13. G. D. Nastrom and F. D. Eaton, "Turbulence eddy dissipation rates from radar observations at 5-20 km at White Sands Missile Range, New Mexico," Journal of Geophysical Research, vol. 102, no. D16, 1997, pp. 19,495-19,505.
  14. A. K. Ghosh, A. R. Jain, and V. Sivakumar, "Simultaneous MST radar and radiosonde measurements at Gadanki (13.5° N, 79.2° E) 2. Determination of various atmospheric turbulence parameters," Journal of Geophysical Research, vol. 38, no. 1, 2003, pp. 14-12.
  15. S. S. Das, A. K. Ghosh, K. Satheesan, A. R. Jain, and K. N. Uma, "Characteristics of atmospheric turbulence in terms of background atmospheric parameters inferred using MST radar at Gadanki (13.5 N, 79.2 E)," Radio Science, vol. 45, no. 04, 2010, pp. 1-14. https://doi.org/10.1029/2009RS004256