• Title/Summary/Keyword: Energy Design Scheme

Search Result 385, Processing Time 0.029 seconds

A New Design of Privacy Preserving Authentication Protocol in a Mobile Sink UAV Setting (Mobile Sink UAV 환경에서 프라이버시를 보장하는 새로운 인증 프로토콜 설계)

  • Oh, Sang Yun;Jeong, Jae Yeol;Jeong, Ik Rae;Byun, Jin Wook
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.6
    • /
    • pp.1247-1260
    • /
    • 2021
  • For more efficient energy management of nodes in wireless sensor networks, research has been conducted on mobile sink nodes that deliver data from sensor nodes to server recently. UAV (Unmanned Aerial vehicle) is used as a representative mobile sink node. Also, most studies on UAV propose algorithms for calculating optimal paths and have produced rapid advances in the IoD (Internet of Drones) environment. At the same time, some papers proposed mutual authentication and secure key exchange considering nature of the IoD, which requires efficient creation of multiple nodes and session keys in security perspective. However, most papers that proposed secure communication in mobile sink nodes did not protect end-to-end data privacy. Therefore, in this paper, we propose integrated security model that authentication between mobile sink nodes and sensor nodes to securely relay sensor data to base stations. Also, we show informal security analysis that our scheme is secure from various known attacks. Finally, we compare communication overhead with other key exchange schemes previously proposed.

A study on Protective Coordination of MCA for Performing of the Pad Mounted Transformer's inside Protective Device (지상변압기의 내부 보호장비 작동을 위한 MCA 보호협조에 대한 연구)

  • Hyun, Seung-Yoon;Kim, Chang-Hwan
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.8 no.1
    • /
    • pp.5-7
    • /
    • 2022
  • KEPCO's plan is undergoing a trial operation to replace the open-loop section with ring main units configuration where underground distribution lines are installed, by linking the multi-way circuit breakers auto (MCA) on the power side of each pad-mounted transformer. However, ring main units application mentioned above may cause the ripple effects, when implementing the configuration without a study of protection coordination. Because ring main units with classical pre-set protection devices contribution in fault condition didn't consider yet. For the reliable ring main units operation, it is necessary to resolve several protection issues such as the protection coordination with substation side, prevention of the transformer inrush current. These issues can radically deteriorate the distribution system reliability Hence, it is essential to design proper protection coordination to reduce these types of problems. This paper presents a scheme of ring main units' configuration and MCA's settings of time-current curves to preserve the performance of protection coordination among the switchgears considering constraints, e.g. prevention of the ripple effects (on the branch section when a transformer failure occurs and the mainline when a branch line failure occurs). It was confirmed that the propagation of the failure for each interrupter segment could be minimized by applying the proposed TCC and the interrupter settings for the MCAs (branch, transformer). Further, it was verified that the undetected area of the distribution automation system (DAS) could be supplemented by having the MCA configurated ring main units operate first, instead of the internal protection equipment in the transformer such as the fuse, STP when a transformer failure occurs.

Drop Impact Analysis of Outside Cooling Unit Package of System Air-Conditioner and Experimental Verification (시스템 에어컨 실외기 포장품의 낙하충격해석 및 시험적 검증)

  • Kim, Hyung-Seok;Lee, Boo-Yoon;Lee, Sanghoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.111-116
    • /
    • 2018
  • This research examines the drop impact of an external cooling unit package of an air conditioner system. The packaging is composed of a shock-absorbing material, which protects the package contents by absorbing the impact energy and other parts for fixture. Accurate quantification of the impact acceleration experienced by the package contents is necessary to design an effective packaging with minimal volume and sufficient shock absorbing capacity. Explicit time integration was used for the drop impact analyses. A finite element model of the package was constructed, material testing and material model selection were carried out, and sensors for data acquisition were modeled to obtain accurate simulation results. The results were compared with real physical test data. Due to imprecise modeling of the damping, the acceleration and strain values predicted by the simulation were larger than those from physical test. However, the trend of the history data and the peak deceleration value in the direction of impact showed good agreements. Thus, the analysis model and scheme are suitable for the design of an air conditioner cooling unit package.

Characteristics of NH3 Decomposition according to Discharge Mode in Elongated Rotating Arc Reactor (신장 회전아크 반응기에서 방전모드에 따른 암모니아 분해특성)

  • Kim, Kwan-Tae;Kang, Hee Seok;Lee, Dae Hoon;Jo, Sung Kwon;Song, Young-Hoon;Kim, In Myoung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.5
    • /
    • pp.356-362
    • /
    • 2013
  • An attempt has been made to optimize elongated rotating arc plasma $NH_3$ scrubber. Among diverse semiconductor processes, diffusion and implantation process inevitably produce $NH_3$ as byproduct and efficient dry process for the decomposition of $NH_3$ is required. Plasma process does not produce NOx that is commonly produced in combustion process and there is no problem of deactivation, usually experienced in catalyst process. However, plasma process uses electrical energy and needs to be optimized to achieve feasibility of application. In this work, mode control of rotating arc is presented as tentative solution for the possible optimization of the process. Based on existing rotating arc, scale-up and following mode mapping was tried. Proposed reactor design was evaluated in the $NH_3$ decomposition process and revealed that optimization scheme is at hand. In the experiment of full scale scrubber including heat exchanger, the process gave more stable and efficient process of $NH_3$ decomposition.

Integrated Circuit of a Peak Detector for Flyback Converter using a 0.35 um CMOS Process (0.35 um CMOS 공정을 이용한 플라이백 컨버터용 피크검출기의 집적회로 설계)

  • Han, Ye-Ji;Song, Han-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.42-48
    • /
    • 2016
  • In this paper, a high-precision peak detector circuit that detects the output voltage information of a fly-back converter is proposed. The proposed design consists of basic analog elements with only one operational amplifier and three transistors. Because of its simple structure, the proposed circuit can minimize the delay time of the detection process, which has a strong impact on the precision of the regulation aspect of the fly-back converter. Furthermore, by using an amplifier and several transistors, the proposed detector can be fully integrated on-chip, instead of using discrete circuit elements, such as capacitors and diodes, as in conventional designs, which reduces the production cost of the fly-back converter module. In order to verify the performance of the proposed scheme, the peak detector was simulated and implemented by using a 0.35 m MagnaChip process. The gained results from the simulation with a sinusoidal stimulus signal show a very small detection error in the range of 0.3~3.1%, which is much lower than other reported detecting circuits. The measured results from the fabricated chip confirm the simulation results. As a result, the proposed peak detector is recommended for designs of high-performance fly-back converters in order to improve the poor regulation aspect seen in conventional designs.

Survey of Sedimentary Environment and Sediment at the West-Northern Site of Chagwi-do nearby Jeju Island (제주도 차귀도 서북쪽 해역 내 퇴적 환경 및 퇴적물 조사)

  • Kim, Hansoo;Hyeon, Jong-Wu;Jin, Changzhu;Kim, Jeongrok;Cho, Il-Hyoung
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.2
    • /
    • pp.137-143
    • /
    • 2016
  • The sedimentary environment and sediment were surveyed at the West-Northern site of Chagwi-do nearby Jeju Island for the design of the embedded suction anchor system of 10 MW-class floating wave-offshore wind hybrid power generation system. According to the classification scheme of Chough et al.[2002], the echo type of the seismic profiles using the chirp III was classified. As a results, the center and west-northern area of survey site were proved to be type I-3 where subbottom layer with thickness 5~15 m exists under the flat seafloor. On the other hands, the east-southern area were regarded to be type I-1, I-2 and III-1 where seafloor reflection is much stronger than type I-3. Also, the physical tests (unit weight, moisture content, grain size, liquid limit, specific gravity) were performed with samples taken from 8 fixed locations. It is found that the sand (SP), the sand blended with silt (SM) and the mixture of SP-SM are distributed uniformly on the survey area.

Study on Manufacturing Process of Hollow Main Shaft by Open Die Forging (자유단조공법을 통한 중공형 메인샤프트 제조공정에 관한 연구)

  • Kwon, Yong Chul;Kang, Jong Hun;Kim, Sang Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.2
    • /
    • pp.221-227
    • /
    • 2016
  • The main shaft is one of the key components connecting the rotor hub and gear box of a wind power generator. Typically, main shafts are manufactured by open die forging method. However, the main shaft for large MW class wind generators is designed to be hollow in order to reduce the weight. Additionally, the main shafts are manufactured by a casting process. This study aims to develop a manufacturing process for hollow main shafts by the open die forging method. The design of a forging process for a solid main shaft and hollow shaft was prepared by an open die forging process design scheme. Finite element analyses were performed to obtain the flow stress by a hot compression test at different temperature and strain rates. The control parameters of each forging process, such as temperature and effective strain, were obtained and compared to predict the suitability of the hollow main shaft forging process. Finally, high productivity reflecting material utilization ratio, internal quality, shape, and dimension was verified by the prototypes manufactured by the proposed forging process for hollow main shafts.

Analysis on the Recent Simulation Results of the Pilot Carbon Emission Trading System in Korea (국내 온실가스 배출권거래제도 시범도입방안에 관한 소고(小考))

  • Lee, Sang-Youp;Kim, Hyo-Sun;Yoo, Sang-Hee
    • Environmental and Resource Economics Review
    • /
    • v.13 no.2
    • /
    • pp.271-300
    • /
    • 2004
  • We investigate the two recent simulations of the proto-type domestic carbon emission trading system in Korea and draw some policy implications. The first simulation includes the 5 electric power companies based on baseline and credit. But the second one is with the 7 energy-intensive companies based on cap and trade. The voluntary approaches in this paper revealed the instability of market equilibrium, i.e., price volatility or distortion, excess supply or demand. These phenomena stems from excess incentives to the players, asymmetric information, players' irresponsible strategic behaviors, and non acquaintance of trading system. This paper suggests the basic design for domestic carbon trading system in future and a stepwise introduction strategy for it including the incentive auction scheme, the total quantity of incentive needed, and how to finance it. Meantime, the further simulations on the various sectors based on voluntary participation must be essential for learning experiences and better policy design.

  • PDF

Development of an Improved Numerical Methodology for Design and Modification of Large Area Plasma Processing Chamber

  • Kim, Ho-Jun;Lee, Seung-Mu;Won, Je-Hyeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.221-221
    • /
    • 2014
  • The present work proposes an improved numerical simulator for design and modification of large area capacitively coupled plasma (CCP) processing chamber. CCP, as notoriously well-known, demands the tremendously huge computational cost for carrying out transient analyses in realistic multi-dimensional models, because electron dissociations take place in a much smaller time scale (${\Delta}t{\approx}10-8{\sim}10-10$) than time scale of those happened between neutrals (${\Delta}t{\approx}10-1{\sim}10-3$), due to the rf drive frequencies of external electric field. And also, for spatial discretization of electron flux (Je), exponential scheme such as Scharfetter-Gummel method needs to be used in order to alleviate the numerical stiffness and resolve exponential change of spatial distribution of electron temperature (Te) and electron number density (Ne) in the vicinity of electrodes. Due to such computational intractability, it is prohibited to simulate CCP deposition in a three-dimension within acceptable calculation runtimes (<24 h). Under the situation where process conditions require thickness non-uniformity below 5%, however, detailed flow features of reactive gases induced from three-dimensional geometric effects such as gas distribution through the perforated plates (showerhead) should be considered. Without considering plasma chemistry, we therefore simulated flow, temperature and species fields in three-dimensional geometry first, and then, based on that data, boundary conditions of two-dimensional plasma discharge model are set. In the particular case of SiH4-NH3-N2-He CCP discharge to produce deposition of SiNxHy thin film, a cylindrical showerhead electrode reactor was studied by numerical modeling of mass, momentum and energy transports for charged particles in an axi-symmetric geometry. By solving transport equations of electron and radicals simultaneously, we observed that the way how source gases are consumed in the non-isothermal flow field and such consequences on active species production were outlined as playing the leading parts in the processes. As an example of application of the model for the prediction of the deposited thickness uniformity in a 300 mm wafer plasma processing chamber, the results were compared with the experimentally measured deposition profiles along the radius of the wafer varying inter-electrode gap. The simulation results were in good agreement with experimental data.

  • PDF

Radiation Exposure of an Astronaut subject to Various Space Radiation Environments and Shielding Conditions (다양한 우주방사선 환경과 차폐 조건에서 우주인이 받는 방사선 피폭량)

  • Chae, Myeong-Seon;Chung, Bum-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.10
    • /
    • pp.1038-1048
    • /
    • 2010
  • Radiation exposures of an astronaut during the space travels to the International Space Station(ISS) of the Soyuz and the Moon of the Apollo, were calculated considering the altitude, boarding time, period of stay, kinds of spaceships and space suits. The calculated radiation exposures decrease dramatically according to the thickness of the shielding by the wall of the spaceships and by the space suits. For the space travel to the ISS of Soyuz at Low Earth orbit, the thickness of the spaceship required to optimally reduce the radiation exposure is 3 cm. For the Extravehicle Mobility Unit(EMU) the exposures are minimized at 4 cm of the aluminized Mylar and 5 cm of the Demron, respectively. The aluminized Mylar showed better radiation shielding than the Demron which contains the high Z materials. The radiation exposures of an astronaut were $4.2\times10^{-6}$ Sv for the ISS travel and $4.3\times10^{-5}$ Sv for the Moon explore. The high concentration of the high energy proton flux at the surface of the Moon results in high radiation exposure. The calculation scheme and results of this study can be used in the design of the shielding performance of a spaceship and space suits.