• 제목/요약/키워드: Energy Demand Management

검색결과 477건 처리시간 0.025초

신재생에너지 정책과 수요관리 정책의 통합 운영 전략에 관한 연구 (A Study on Integrated Operation Strategies Between New & Renewable Energy Policy and Demand Side Management Policy)

  • 황성욱;정훈;나환선;원종률;김정훈
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.144-144
    • /
    • 2010
  • Reasonable usage methods of energy resources, which are limited for human beings to use, consists of new & renewable energy (NRE) and demand side management (DSM). All technologies and policies for energy resources are classified into two fields, methods for using new energy resources and methods for using conventional fuel energy resources. Various development activities for these fileds have been implemented and various subsidy programs have been operated to penetrate into markets rapidly. These subsidy programs have various types of subsidy by energy resources and programs and the budget are funded by government, which is called Electric Power Industry Basis Fund and is managed considering technology level, economic analysis, global environment, etc. These subsidy programs are managed by Korea Energy Management Corporation (KEMCO) for NRE and by Korea Electric Power Corporation (KEPCO) for DSM, the management are different among two corporations because the purposes and features of establishment are different though these are all public organization. KEMCO is managing the NRE subsidy programs according to the government will, while the management of KEPCO subjects to power system operations though the government will for DSM is considered. NRE which is on the initial phase of diffusion would not affect on power system seriously but the affects could be grown when the diffusion and importance are expanded. Hence some integrated affection analyses considering NRE and DSM are required and this paper shows the concept of integrated operation strategies with ground source heat pump systems which are related with two fields simultaneously.

  • PDF

Managing and Minimizing Cost of Energy in Virtual Power Plants in the Presence of Plug-in Hybrid Electric Vehicles Considering Demand Response Program

  • Barati, Hassan;Ashir, Farshid
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권2호
    • /
    • pp.568-579
    • /
    • 2018
  • Virtual power plants can be regarded as systems that have entered the network after restructure of power systems. In fact, these plants are a set of consumers capable of consuming and generating power. In response to widespread implementation of plug-in hybrid electric vehicles, further investigation of energy management in this type of power plants seems to be of great value. In effect, these vehicles are able to receive and inject power from/into the network. Hence, study of the effects of these vehicles on management of virtual power plants seems to be illuminative. In this paper, management of power consumption/generation in virtual power plants has been investigated in the presence of hybrid electric vehicles. The objective function of virtual power plants problem management is to minimize the overall costs including not only the costs of energy production in power generation units, fuels, and degradation of batteries of vehicles, but also the costs of purchasing electricity from the network. Furthermore, the constraints on the operational of plants, loads and hybrid vehicles, level of penalty for greenhouse gas emissions ($CO_2$ and $NO_x$) produced by power plants and vehicles, and demand response to the immediate price of market have all been attended to in the present study. GAMS/Cplex software system and sample power system have been employed to pursue computer implementation and simulation.

수용가 수요관리용 전지전력저장시스템의 최적용량 산정방법 (Optimal Capacity Determination Method of Battery Energy Storage System for Demand Management of Electricity Customer)

  • 조경희;김슬기;김응상
    • 전기학회논문지
    • /
    • 제62권1호
    • /
    • pp.21-28
    • /
    • 2013
  • The paper proposes an optimal sizing method of a customer's battery energy storage system (BESS) which aims at managing the electricity demand of the customer to minimize electricity cost under the time of use(TOU) pricing. Peak load limit of the customer and charging and discharging schedules of the BESS are optimized on annual basis to minimize annual electricity cost, which consists of peak load related basic cost and actual usage cost. The optimal scheduling is used to assess the maximum cost savings for all sets of candidate capacities of BESS. An optimal size of BESS is determined from the cost saving curves via capacity of BESS. Case study uses real data from an apartment-type factory customer and shows how the proposed method can be employed to optimally design the size of BESS for customer demand management.

건축물의 에너지절약 등급표시제에 관한 연구 (A Study on the grade marking system for saving energy of building.)

  • 이상집;김인수;김성남;오봉환;이훈구;한경희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 C
    • /
    • pp.1487-1489
    • /
    • 1999
  • The power demand has increased the groth of industry and improvement of life. In the past, the focus of an electric power company has been on the supply aspect of a management strategy, such as the stable provision of electric power through the construction of power equipment and least Cost planning. There has been a change of method in energy management. The balance of it seems to put forward to Demand Side Management(DSM) from Supply Side Management(SSM). Therefore, this paper is made a study for the method of energy grade of building.

  • PDF

청소년 에너지 절약 실태 및 교육 요구도 분석 (Analysis of the Reduction of Energy Consumption by Teenagers and the Demand Level for Education Related to the Reduction of Energy Consumption)

  • 박용주;정순희;신민경
    • 가정과삶의질연구
    • /
    • 제27권3호
    • /
    • pp.79-91
    • /
    • 2009
  • The purpose of this study is to understand the reduction of energy consumption and demand level for education relating to the reduction of energy consumption by middle school students. First, the perception of the reduction of energy consumption had a significant relationship with sex and grade. Second, the demand level for education relating to the reduction of energy consumption showed a significant relationship with only sex. Third, regression analysis on the influence of perception of the reduction of energy consumption showed a correlation between theperception of a reduction of energy consumption and the demand level for education relating to a reduction of energy consumption. The research suggests that students want an education that reduces energy consumption at school implemented during experience-centered and activity-centered discretionary activities, rather than duringtheory-centered curricular activities. It also suggests that overcoming limitations of space, that is, implementation of such education at various places besides school, and the application of teaching and teaming methods which use the internet and image media are more effective for education for the reduction of energy consumption.

Bargaining-Based Smart Grid Pricing Model for Demand Side Management Scheduling

  • Park, Youngjae;Kim, Sungwook
    • ETRI Journal
    • /
    • 제37권1호
    • /
    • pp.197-202
    • /
    • 2015
  • A smart grid is a modernized electrical grid that uses information about the behaviors of suppliers and consumers in an automated fashion to improve the efficiency, reliability, economics, and sustainability of the production and distribution of electricity. In the operation of a smart grid, demand side management (DSM) plays an important role in allowing customers to make informed decisions regarding their energy consumption. In addition, it helps energy providers reduce peak load demand and reshapes the load profile. In this paper, we propose a new DSM scheduling scheme that makes use of the day-ahead pricing strategy. Based on the Rubinstein-Stahl bargaining model, our pricing strategy allows consumers to make informed decisions regarding their power consumption, while reducing the peak-to-average ratio. With a simulation study, it is demonstrated that the proposed scheme can increase the sustainability of a smart grid and reduce overall operational costs.

공간정보를 활용한 대도시권역 비상시 에너지 수요량 예측 (Energy Demand Estimation in Metropolitan Area in Case of Emergency using Spatial Information)

  • 남경목;이홍철;이동은
    • 한국건설관리학회논문집
    • /
    • 제20권3호
    • /
    • pp.105-112
    • /
    • 2019
  • 이상고온 현상으로 전력수요가 예측치를 초과하여 대규모 정전사태가 발생하고 있다. 과밀화된 도시의 경우, 예상치 못한 에너지 수급 차질은 막대한 경제적 피해를 초래하고 도시기능을 마비시키는 중요한 위협요소이다. 기존 비상전력 수요량을 추정하는 방법은 도시의 공간적 차원에서 현실적 수요량을 추정할 수 없어 비상시 예비전력 관리가 용이하지 않다. 본 논문은 도시의 공간정보와 건축물 용도별 평상시 에너지소비 원단위, 비상시 전력수요 원단위를 활용하여 비상전력수요의 공간적 분포를 규명하고, 이를 활용하여 비상전력 수요량을 예측하는 방법론을 제시한다.

Optimal unidirectional grid tied hybrid power system for peak demand management

  • Vineetha, C.P.;Babu, C.A.
    • Advances in Energy Research
    • /
    • 제4권1호
    • /
    • pp.47-68
    • /
    • 2016
  • A well designed hybrid power system (HPS) can deliver electrical energy in a cost effective way. In this paper, model for HPS consisting of photo voltaic (PV) module and wind mill as renewable energy sources (RES) and solar lead acid battery as storage device connected to unidirectional grid is developed for peak demand reduction. Life time energy cost of the system is evaluated. One year hourly site condition and load pattern are taken into account for analysing the HPS. The optimal HPS is determined for least life time energy cost subject to the constraints like state of charge of the battery bank, dump load, renewable energy (RE) generation etc. Optimal solutions are also found out individually for PV module and wind mill. These three systems are compared to find out the most feasible combination. The results show that the HPS can deliver energy in an acceptable cost with reduced peak consumption from the grid. The proposed optimization algorithm is suitable for determining optimal HPS for desired location and load with least energy cost.

An Empirical Study on the Operation of Cogeneration Generators for Heat Trading in Industrial Complexes

  • Kim, Jaehyun;Kim, Taehyoung;Park, Youngsu;Ham, Kyung Sun
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권3호
    • /
    • pp.29-39
    • /
    • 2019
  • In this study, we introduce a model that satisfies energy efficiency and economical efficiency by introducing and demonstrating cogeneration generators in industrial complexes using various actual data collected at the site. The proposed model is composed of three scenarios, ie, full - time operation, scenario operated according to demand, and a fusion type. In this study, the power generation profit and surplus thermal energy are measured according to the operation of the generator, and the thermal energy is traded according to the demand of the customer to calculate the profit and loss including the heat and evaluate the economic efficiency. As a result of the study, it is relatively profitable to reduce the generation of the generator under the condition that the electricity rate is low and the gas rate is high, while the basic charge is not increased. On the contrary, if the electricity rate is high and the gas rate is low, The more you start up, the more profit you can see. These results show that even a cogeneration power plant with a low economic efficiency due to a low "spark spread" has sufficient economic value if it can sell more than a certain amount of heat energy from a nearby customer and adjust the applied power through peak management.

An Optimal Power Scheduling Method Applied in Home Energy Management System Based on Demand Response

  • Zhao, Zhuang;Lee, Won Cheol;Shin, Yoan;Song, Kyung-Bin
    • ETRI Journal
    • /
    • 제35권4호
    • /
    • pp.677-686
    • /
    • 2013
  • In this paper, we first introduce a general architecture of an energy management system in a home area network based on a smart grid. Then, we propose an efficient scheduling method for home power usage. The home gateway (HG) receives the demand response (DR) information indicating the real-time electricity price, which is transferred to an energy management controller (EMC). Referring to the DR, the EMC achieves an optimal power scheduling scheme, which is delivered to each electric appliance by the HG. Accordingly, all appliances in the home operate automatically in the most cost-effective way possible. In our research, to avoid the high peak-to-average ratio (PAR) of power, we combine the real-time pricing model with the inclining block rate model. By adopting this combined pricing model, our proposed power scheduling method effectively reduces both the electricity cost and the PAR, ultimately strengthening the stability of the entire electricity system.