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In this paper, we first introduce a general architecture of 
an energy management system in a home area network 
based on a smart grid. Then, we propose an efficient 
scheduling method for home power usage. The home 
gateway (HG) receives the demand response (DR) 
information indicating the real-time electricity price, 
which is transferred to an energy management controller 
(EMC). Referring to the DR, the EMC achieves an 
optimal power scheduling scheme, which is delivered to 
each electric appliance by the HG. Accordingly, all 
appliances in the home operate automatically in the most 
cost-effective way possible. In our research, to avoid the 
high peak-to-average ratio (PAR) of power, we combine 
the real-time pricing model with the inclining block rate 
model. By adopting this combined pricing model, our 
proposed power scheduling method effectively reduces 
both the electricity cost and the PAR, ultimately 
strengthening the stability of the entire electricity system. 
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I. Introduction 

The information and technology era has seen a rise in the 
demand for high quality and reliable electrical energy service. 
Simultaneously, the strain on global natural resources and the 
environment has increased. The smart grid is a system that 
includes a physical power system and an information system 
that link a variety of equipment and assets together to form a 
customer service platform [1]. To increase power networks’ 
reliability and robustness and to lower energy cost, the smart 
grid will likely incorporate some new technologies in 
communications, distributed systems, advanced metering, 
automation, distributed storage, and safety and security [2]. 

With the application of the smart grid, residents can reduce 
their electricity cost according to the scheduling pattern of their 
home electricity usage, based on the real-time electricity prices 
(RTEPs). For this purpose, several schemes for scheduling in-
home power consumption have been proposed. In [3], the 
authors obtained an appropriate target total power consumption 
for all appliances, but the specific power scheduling scheme for 
each appliance was not mentioned. In [4], the authors 
scheduled the power usage for both interruptible and non-
interruptible loads so that the electricity cost was reduced, but it 
was shown that peak power demands could emerge when the 
electricity price was low. In [5], the electricity cost and the peak 
demand values were reduced simultaneously, but the 
assumptions of the scenario seem impractical. The power 
consumption of each appliance should be nearly constant over 
time. Demand response (DR) generally refers to actions taken 
to change residents’ electricity demand in response to 
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variations in the price of electricity over time. As the basis for 
electricity usage scheduling, DR information would be 
delivered to each home. With an energy management system 
(EMS) installed in each home, residents can make use of this 
information via an in-home energy management controller 
(EMC), which uses both prices and user preferences to 
schedule power usage. In our research, an EMC is embedded 
in the home gateway (HG), which is able to transmit the 
control signal to smart appliances in the home via a home area 
network (HAN). Several schemes for power scheduling-based 
communication protocols for in-home appliances over a HAN 
have been proposed [3], [6]-[9]. 

The most common DR includes time of use pricing (TOUP), 
critical peak pricing (CPP), and real-time pricing (RTP). Since 
the price of electricity (POE) in TOUP and CPP is 
predetermined about three times a year, and the POE in RTP 
changes as often as hourly (sometimes more often), which may 
reflect the utility’s cost for a generation or the wholesale price 
level, RTP has a much higher flexibility than TOUP and CPP, 
although CPP adds a peak price to TOUP [10]. Several ideas 
and methods have been proposed to achieve a low electricity 
expense by adopting the RTP model [3]-[5]. However, the 
purpose of DR is not only to lower electricity demand from 
customers at peak demand times but also to prevent higher 
power demand peaks even if the POE is low. Regarding this 
point, RTP still has a defect: the use of RTP may cause the 
demand to be higher during the hours with low POE, which 
would lead to a higher peak electricity demand and peak-to-
average ratio (PAR) at the low price time. 

The overload would result in instability of the system or even 
a blackout. Because of this, a combination of RTP with 
inclining block rates (IBRs) is necessary. In the IBR model, 
when the total electricity consumption exceeds a fixed 
threshold, the POE reaches a higher level than in the normal 
situation. After being combined with IBR, the RTP model 
would effectively reduce PAR and increase the stability of the 
whole electricity system. There have been several kinds of 
methods proposed to solve the optimal in-home power 
scheduling problem, including linear programming [3], [5], the 
particle swarm optimization (PSO) method [11], and game 
theory [12]. Normally, formulas for most of these kinds of 
optimization problems are nonlinear, so we consider that these 
kinds of problems can be solved easily by using a genetic 
algorithm (GA). 

In this paper, we will introduce the general architecture of 
EMS in a HAN and how the EMS works in the home and then 
present an approach to schedule the electricity usage in the 
home with the purpose of reducing the electricity cost and PAR. 
At last, simulation results for this approach will be presented to 
show its effectiveness and feasibility working in EMS. 

 

Fig. 1. Architecture of EMS in home area. 
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II. Architecture of Energy Management System in
   Home Area Network 

The objective of deploying EMS in the home is to minimize 
the expense of electricity and reduce the PAR by scheduling 
the pattern of electricity usage based on a priori supplied POE 
to ensure that the power system is stable and secure. EMS 
mainly comprises an advanced metering infrastructure (AMI), 
smart meters, the HG, the EMC, home appliances, and in-home 
display (IHD) devices. The whole architecture of EMS with 
the help of a wireless HAN is shown in Fig. 1. 

The AMI is a key factor in a smart grid treated as a central 
nervous system of the EMS architecture, which is an 
architecture for automated, two-way communication between a 
smart meter and a utility company [13]. Also, it is responsible 
for collecting and transmitting consumption data delivered 
from distributed smart meters to the utility company and for 
relaying a DR signal for pricing information from the utility 
company back to the smart meters almost in real time [14]. 
Generally, a smart meter is installed outside each residential 
home between the AMI and the EMC, which is responsible for 
reading and processing consumption data to be transferred to 
the utility company, simultaneously, sending the DR signal to 
the EMC for further analysis. In this paper, we classify two 
kinds of home appliances: operation automatically appliances 
(OAAs) and operation manually appliances (OMAs). An OAA 
refers to an appliance that can operate on its own, without 
manual control, such as a washing machine, a dish washer, or 
an air conditioner. OAAs are usually categorized as 
interruptible (for example, washing machine) and non-
interruptible (for example, electric kettle) [4]. On the contrary, 
an OMA can operate productively only if a resident is using it 
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manually, such as in the case of a computer, a television, or a 
vacuum cleaner. Since these OMAs would be switched on and 
off manually, the home appliances that could be scheduled are 
only OAAs. In our research, we embed the EMC in the HG, 
which receives the RTEP from a smart meter through the HG. 

An optimal power usage schedule for each OAA can be 
exploited with the purpose of minimizing the electricity cost 
and reducing the PAR. There are various solutions for creating 
a communication link between the smart meter and the HG, 
such as ZigBee, Z-Wave, Wi-Fi, and a wired (HomePlug) 
protocol [15]. The HG transmits the power usage schedule 
message to OAAs via a HAN so as to control them to operate 
in a low POE time. In addition, residents can obtain extra 
power from a renewable power generator, and the message, 
indicating the quantity of power generated, is sent to the smart 
meter through the HG for further analysis. The scheduling 
process can be monitored for modification either by an IHD 
device or by a remote control, such as a mobile phone or a 
laptop via the Internet. 

III. Proposed Approach to Manage Energy Consumption 
with Genetic Algorithm 

In this section, an optimal approach to schedule the power 
usage of all OAAs in the home for the purpose of minimizing 
the electricity cost and alleviating PAR based on the RTP 
combined with IBR will be proposed. 

1. Usage Pattern of Home Electric Appliances 

Once the HG receives DR information and a profile of RTEP 
from the utility company through the smart meter, the EMC 
embedded in the HG can make a decision on the power 
schedule for all OAAs in the home. Residents usually prefer to 
operate every OAA in a certain time automatically to avoid 
peak price time or to make some appliances finish their job 
before a specific time. For example, when residents are 
sleeping at night, the washing machine may start to work 
because the POE is low. In another example, if residents want 
to have dinner as soon as they arrive home in the afternoon, 
they must ensure that the electric rice cooker finishes its job 
before they arrive home. From this point, it is necessary for 
residents to set the timing parameters for each OAA, including 
the length of operation time (LOT) from start to end as well as 
its power consumption per hour and the operation time interval 
(OTI) during which the appliance is valid to be scheduled. 
These parameters can be set on the IHD device and then 
transmitted to the EMC via the HG. 

Since every OMA is operated manually and nobody can say 
in advance when and for how long an OMA will be used, it 

seems impractical to set timing parameters for each OMA 
ahead of time. Therefore, in our research, we only consider the 
impact of OAAs on electricity cost and PAR. However, we 
should note a phenomenon: if at the time a resident operates an 
OMA the total power consumption in the home exceeds the 
power threshold of the IBR pricing model, then both the 
electricity cost and the PAR become much greater values. In 
this circumstance, to avoid the increase of the expense and 
PAR, one or several interruptible OAAs should stop operating 
automatically to wait for the appropriate operation times. 

2. Final Goal of Our Approach 

Prior to applying our proposed approach, we divide an hour 
into five time units, that is, we set 12 minutes as a time 
resolution. Therefore, one day contains 120 units, which are 
denoted by the symbol :u u ∈U {1, 2, ,120}. Therefore, 
the shortest operation time of any appliance is set to 12 minutes. 
Hence, the LOT of the air conditioner can be set integer 
multiples of the 12-minute interval. However, there are also 
some other OAAs whose LOT for working once is fixed, such 
as a washing machine, a dishwasher, an electric kettle, and so 
on. These appliances can be operated automatically, so their 
operation times do not need to be controlled manually. 
Therefore, the LOTs of these appliances should be set strictly, 
that is, the operation times should be the numbers that denote 
the integer multiples of 12. Additionally, these times should be 
greater than and closest to the actual LOTs of these appliances. 
For example, if the normal operation time of a washing 
machine is 46 minutes, then the parameter LOT should be set 
as 4 (48 minutes). As another example, the LOT should be set 
as 1 (12 minutes) if the electric kettle needs eight minutes to 
boil the water. However, operating in this way produces errors 
in the final results. In this paper, because the difference of a few 
minutes is considered negligible, the errors are disregarded. 
A denotes the set of OAAs. For each appliance ,a ∈ A  we 

assume Pa as a power consumption scheduling vector (PCSV), 
which is 

   ( ) ( ) ( )1 2 120, , , ,a a ap p p⎡ ⎤
⎣ ⎦aP             (1) 

where ( )u
ap  denotes the power consumption value for 

appliance a during the u-th time unit. Considering there is a 
nameplate with each electric appliance, we assume that the 
power consumption values per hour for all appliances are all 
fixed respectively. When the power consumption value per 
hour of appliance a is denoted by xa, during the u-th time unit, 
the corresponding power consumption is 

 ( ) .
5

u a
a

x
p =

 
                (2) 
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Fig. 2. Optimal PCSV can be transmitted by such wireless
network as Wi-Fi, ZigBee, or Z-Wave. 
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As mentioned earlier, xa must be set on the IHD device by 
residents; in return, it is transmitted to the EMC for further 
utilization. 

The purpose of this paper is to optimize the PCSV Pa for 
each appliance a ∈ A  so as to minimize the electricity cost 
and reduce PAR. The optimal Pa is transmitted to appliance a 
by the HG via suitable wireless solutions, as shown in Fig. 2. 

3. RTP Combined with IBR 

It has been mentioned that RTP has a much higher flexibility 
than TOUP and CPP, because the POE in RTP is dynamic in 
that it can change within one hour, 15 minutes, or even five 
minutes. However, it is much easier to concentrate the 
operation of several appliances at a relatively low POE time. 
Therefore, we combine RTP with IBR, in which the POE 
could be different within the same time unit based on the total 
power consumption. For example, because a resident wants to 
reduce his electricity cost, he plans to run most of the 
appliances at 3:00 a.m. due to the low POE at that time. 
However, the total power consumption at that time may exceed 
the threshold of IBR, so it costs a lot more than he expects. In 
this paper, we set two electricity price levels in IBR, and the 
POE is changed once every hour. The POE function is 

( )
, if 0 ,
, if .

h h h
h h

h h h

a s c
prc s

b s c
≤ ≤⎧

= ⎨ >⎩
         (3) 

Here, the total power consumption in the home during the  
h-th hour is denoted by sh. The RTEP during the h-th hour in a 
day is denoted by ah. The second electricity price level, which 
should be greater than ah, is denoted by bh. Furthermore, ch 
represents the threshold of power consumption at the hour h of 
IBR. When the power consumption sh is less than or equal to 
the threshold ch, the POE is ah. Otherwise, POE is bh, and the 

unit is cents/kwh. 
Considering one hour has been divided into five units, we 

should make a modification to the POE function. By dividing 
sh by 5, we can obtain the total power consumption value for 
every 12-minute us . In the same way, we can also obtain the 
threshold of IBR for every 12-minute unit. Then, the POE 
function can be altered as 

  ( )
, if 0 ,

, if .
u u u

u
u u u

u

a s c
prc

b s c
s

≤ ≤⎧⎪= ⎨
>⎪⎩

       (4) 

After modification, the only difference from the 
aforementioned function is its format, that is, the number of 
variables is 120 instead of 24, due to the time division, whereas 
the POE values are the same as before. 

Now, we assume that if ub  is a constant value greater than 
ua , whenever the total power consumption exceeds the 

threshold, the POE is fixed at ub . Such would be the case that 
if there must be a time interval for the total power consumption 
to exceed the threshold, this can happen at any time in the day. 
If this time interval arises at the low price time, that is 
acceptable. However, if a corresponding time interval occurs at 
the highest price time, the whole power system is overloaded 
such that it may damage the system and yield to a blackout. 
Therefore, in this paper, we assume that 

 ,u ub aλ= ⋅                     (5) 

where λ is a positive value. Now, in the IBR, the second price 
level ub  is changed with ua , which means that when the 
normal POE ua  is the highest in the day, then ub  turns out 
to be the highest. In this case, the circumstance mentioned 
before would not happen. However, it seems unrealistic to 
utilize this price function because it is impossible to get the 
whole POE function ahead of time. However, several 
electricity price prediction methods have been proposed in [5], 
[16]-[19]. 

4. Problem Formulation 

As mentioned before, it is necessary for residents to set some 
parameters for each OAA. Toward this, we assume 

, ( )a a a aα β α β∈ <U as the start and the end time unit, 
respectively. Along this OTI, the power consumption of 
appliance a is assumed to be valid for appropriate scheduling. 
Let la indicate the LOT, that is, the number of time units for 
operation of appliance a. The above parameters must be set by 
residents via IHD to be transmitted to the EMC. In addition, it 
is confined that a aβ α−  must be greater than or equal to la. 
For example, if the washing machine needs one hour to finish 
its work, then the value of a aβ α−  could be any number that  
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Fig. 3. Four examples to show relationship among all parameters
for each appliance. 
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is greater than or equal to 5 and less than or equal to 120. The 
greater a aβ α−  is, the more possible solutions there are. 
Define variable ta as the start time for the operation of 
appliance a. Since αa, βa, la, and xa are all known already, once 
we have ta, the PCSV of appliance a is determined. In Fig. 3, 
the example shows the relationship of these parameters, in 
which four different kinds of OAAs are included. 

Now, for each appliance a ∈ A , there exists a group of 
parameters comprising the OTI [ , ],a aα β  LOT la, and power 
consumption value per hour xa. The earliest start time unit and 
the latest finish time unit are represented by aα  and aβ , 
respectively. In addition, we allow start time unit ta to be 
variable. Having αa, βa, and la, ta should be greater than or 
equal to aα  and less than or equal to .a alβ −  In other 
words, the range of the start time unit of a is 

 [ ],a a a at lα β∈ − .                (6) 

The range of ta is shown in Fig. 4. 
Since aα , aβ , and la can be set by residents, and xa is 

known as a nominal value for each appliance, (6) can be 
regarded as a constraint with single variable ta. Now, we 
construct a variable vector [ ]1 2, , , at t t , which is composed 
of the start times of all OAAs. Therefore, we can define a 
power consumption scheduling matrix (PCSM) P for all 
OAAs as 

( ) [ ]
( ) [ ]

| , , ,
5

0, , \ ,

u a
a a a a

u
a a a a

x
p p a u t t l

p a u t t l

⎧ ⎫= ∀ ∈ ∈ +⎪ ⎪= ⎨ ⎬
⎪ ⎪= ∀ ∈ ∈ +⎩ ⎭

A
P

A U
,  (7) 

where P denotes a matrix in which each row stands for the 
power schedule of a certain appliance. The index of column is 
represented by u. The expression [ ]\ ,a a au t t l∈ +U   
indicates that u belongs to U, excluding the range of 
[ ], .a a at t l+  By summing up all the values of each column 
vector in the PCSM, a total power consumption scheduling 
vector Pscd is determined as follows: 

( ) ( ){ }scd scd scd| ,ٛ       u up p u= = ∀ ∈∑P P U .       (8) 

 

Fig. 4. Illustration for range of start time unit of home appliance
a: (a) earliest start time and (b) latest start time. 
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Fig. 5. Illustration of concept of DTRa. 
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In (8), P(u) stands for the u-th column in the PCSM. 
Residents usually hope home appliances can finish their work 
as soon as possible. Therefore, we consider lowering the delay 
time rate (DTR) of home appliances. The definition of DTR 
emerges as 

 a a
a

a a a

t
DTR

l
α

β α
−

=
− −

,               (9) 

where DTRa means DTR of the appliance a. Here, if the 
appliance operates at a later time, the later the appliance 
operates, the larger DTRa becomes. The smallest and the largest 
values of DTRa are set to be 0 and 1. For example, assuming 
that a resident sets the parameter OTI for a washing machine as 
[ ]wm wm,α β  and the LOT as lwm, if it starts operating at time 
unit wmα , the DTRwm is 0; if it starts at time unit wwm mlβ − , the 
DTRwm is 1. This relationship can be clearly seen in Fig. 5, 
wherein

4
0aDTR = and

 4
1aDTR = if 

4 4a at α= and 

4 4 4a a at lβ= − , respectively. Therefore, in the final optimization 
formula, a delay time rate should be considered. Now, we 
introduce a delay parameter 1ρ >  and relevant formula can 
be expressed by 

  .aDTR

a

ρ
∈
∑
A                   

(10) 

Since the delay parameter ρ is greater than 1, aDTRρ  
geometrically increases as DTRa continues to enlarge. For 
residents, the value of this formula is expected to be as small as 
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possible. Thus, along with the accomplishment of the final 
optimization problem, to reduce the electricity expense, we try 
to minimize the above value as well. 

Above all, we can clarify the power consumption scheduling 
problem as the following optimization problem: 

 
( ) ( )

[ ]
1 1 scd 2 2minimizeٛ

s.t. , ,
a

a a a a

F F DTR

t l

ω ω

α β

+

∈ −

P
       (11) 

where 

 ( ) ( )( ) ( )
120

1 scd scd scd
1

,u u
u

u

F prc p p
=

= ⋅∑P          (12) 

 ( )2 .aDTR
a

a

F DTR ρ
∈

= ∑
A

           (13) 

In (11), 1ω and 2ω  are the weights representing the 
importance of individual objectives shown in (12) and (13), 
where 1 2 1ω ω+ = , [ ]1 2, 0,1 .ω ω ∈  The weights are 
determined by residents. If a resident prefers to reduce the 
electricity cost, any weight value can be set for which 

1 2.ω ω>  Otherwise, the weight value should reflect 1 2.ω ω<  
In (12), the function uprc  denotes the POE at the u-th time 
unit. 

After normalization, we can construct the final optimization 
formula as follows: 

( )( ) ( )

( )( ) ( )( ) ( )
[ ]

120
scd scd1

1 2120
scd scd max1 max

minimizeٛ    

s.t. , .

a

a

u u DTR
uu a

DTRu u
u au

a a a a

prc p p

prc p p

t l

ρ
ω ω

ρ

α β

= ∈

∈=

⋅
+

⋅

∈ −

∑ ∑
∑∑

A

A ,

 (14) 
For each appliance a ∈ A , since the maximum value of 

aDTRρ is ρ, the value of 
max

aDTR

a

ρ
∈

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑
A

is equal to an ρ , where 

na indicates the number of OAAs. 

5. Genetic Algorithm 

In this paper, we utilize the GA method to optimize the start 
time units of all the OAAs to achieve our objectives. Since the 
start time unit is the only variable in our scheme and the 
constraint parameters are set in the beginning, we assume that 
the total fitness function is (14). In the selection process, we 
adopt a roulette selection method in which the individual with a 
better fitness value has a higher probability to be selected for 
further processing. In general, the time complexity of the GA 
process can be represented as O(generation number*(mutation 
complexity + crossover complexity + selection complexity)). 
Assume the maximal generation number, the size of the 
population, and the number of individuals are denoted by g, N, 

and na, respectively; therefore, the time complexity of our 
scheme is O(gNna). In this case, the time cost increases as the 
three parameters become larger, and, usually, the time cost of 
GA optimization does not satisfy people. However, in our 
approach, the power scheduling process is implemented at the 
beginning of the day; therefore, after time parameters are 
determined, there is enough time for power scheduling, and the 
algorithm running time problem is not so important. We think a 
time cost of a few seconds is acceptable. In this paper, the 
population size is 200; the probability of crossover and the 
probability of mutation are 90% and 2%, respectively. Finally, 
when the generation number reaches 1,000, the evolution 
process will finish. 

IV. Simulation Results 

In this section, we present the simulation results to show the 
superior performance of our proposed approach for in-home 
power scheduling. In this paper, we assume there are 16 OAAs 
in the home. Since residents may not use all of their appliances 
every day, we assume that approximately eight to 16 OAAs are 
used in a given home each day. According to the ratio of the 
two electricity price levels established by British Columbia 
Hydro [20], the value of λ in (5) is determined to be 1.4423. 
Finally, we assume the power threshold to be 0.4uc =  and 
the delay parameter to be ρ =5 for all cases. 

1. Relationship between Electricity Cost and DTR 

As mentioned previously, if residents aim to achieve the 
minimization of electricity cost, OAAs must be operated 
according to how the EMC schedules them. Therefore, in the 
time intervals during which the appliances are valid to be 
scheduled, which are set by residents in advance, the operation 
times of OAAs are not fixed, due to the RTEP and other 
OAAs’ operations. Now, we define 

  
( )

( )ave
a aa

a a aa

t
DTR

l
α

β α
∈

∈

−
=

− −
∑

∑
A

A

.        (15) 

The above formula denotes the average DTR of all OAAs. 
Figure 6 represents the simulation result of the relationship 
between electricity cost and average DTR. 

Generally speaking, the relationship between electricity cost 
and DTRave is a tradeoff. In other words, as the value of DTRave 
increases, electricity cost decreases. However, the minimum 
electricity cost value would emerge at a position at which the 
DTRave value is about 50%, which is not definite, due to the 
random POE. From the result shown in Fig. 6, at the position 
that DTRave equals 0, it implies that the major consideration is 
minimizing the delay time; thus, in this case, ω1=0, ω2=1.  
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Fig. 6. Tradeoff between electricity cost and average DTR. 
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However, when the minimum electricity cost is reached, ω1=1, 
ω2=0. 

2. Impact of Inclining Block Rates 

Now, we focus on a comparison regarding electricity cost 
and PAR between the states of being with and without power 
scheduling. In this paper, the RTEP data is adopted from the 
Ameren Illinois Power Company, and the date range is from 1 
January 2012 to 31 March 2012 (91 days) [21]. The simulation 
results of electricity cost and PAR with RTP combined with 
IBR are shown in Fig. 7. 

In this simulation, we only consider minimizing the 
electricity cost; therefore, in this case, ω1=1, ω2=0. From the 
results shown in Fig. 7(a), it is clear that the average daily 
electricity cost for three months without power scheduling is 
44.39 cents; however, this value is 33.89 cents with power 
scheduling in the home. After three months, the resident could 
save 955.5 cents by using the proposed power scheduling 
approach. Because in our simulation the home appliances 
considered are only OAAs, and the number of OAAs is not 
large, the daily electricity cost is not high. Figure 7(b) shows 
that PAR reduces from 5.01 to 3.44 with the application of our 
proposed approach, leading us to conclude that our approach is 
effective in reducing both electricity cost and PAR. 

As mentioned previously, if only RTP is applied in our 
power scheduling approach, the demand for electricity at the 
low POE time would greatly increase, resulting in a high PAR. 
In this case, to demonstrate the effectiveness of our approach, a 
comparison between RTP only and RTP combined with IBR is 
shown in Fig. 8. Here, if only RTP is used, the PAR value is 
also very high, whereas the proposed RTP combined with IBR 
is a better way to reduce PAR. 

The impact of IBR on peak power usage in the home is 

 

Fig. 7. Impact of proposed power scheduling approach on (a)
daily electricity cost and (b) PAR. 
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Fig. 8. Impact of IBR in proposed approach on PAR. 
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shown in Fig. 9. The power consumption in a home without 
power scheduling is shown in Fig. 9(a), in which there are two 
peak times within a day. With power scheduling using RTP 
only, there may be a much greater number of peak times and 



684   Zhuang Zhao et al. ETRI Journal, Volume 35, Number 4, August 2013 

 

Fig. 9. Profile of power consumption (a) without power
scheduling, (b) with power scheduling using RTP only,
and (c) with power scheduling using RTP combined
with IBR. 
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the peak value may become much larger, as shown in Fig. 9(b). 
Lastly, power scheduling using the combined RTP and IBR 
method proposed in this paper gives rise to superior 
performance in the aspect of eliminating the peak times, as 

 

Fig. 10. Impact of multiuser on (a) PAR of aggregated power
demand and (b) monthly electricity cost. 
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shown in Fig. 9(c). From the results, we can conclude that 
combining RTP and IBR will always result in electricity cost 
minimization and PAR reduction. 

3. Impact of Multiuser 

So far, we have presented the effectiveness of our proposed 
scheme for a single resident. Now, we will present the 
simulation results that show the impact of our scheme on 10  
residents. Figure 10(a) shows that even if the number of 
residents increases, the average PAR of 10 residential users’ 
aggregated power demand is still reduced from 4.33 to 2.89, 
which would lead to the stability and security of the whole 
electricity system. As shown in Fig. 10(b), after adopting our 
proposed scheme, all residents can reduce their monthly 
electricity cost effectively. 

V. Conclusion 

In this paper, we first introduced the architecture of EMS in a 
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HAN, then presented an approach for power scheduling in the 
home with the help of RTEP and residents’ preferences. 

There have been many algorithms proposed for home power 
scheduling. In [22], the authors proposed a power scheduling 
method to save money spent on energy consumption based on 
the RTEP. The researchers’ goal was the same as that presented 
in our paper; however, they did not consider the potential 
damage to the power system resulting from a large PAR value. 
In [23], the authors achieved an optimal power consumption 
scheduling approach to reduce the energy cost and PAR 
simultaneously with game-theory optimization, showing 
desirable results. However, the authors did not consider the 
delay time of the appliances’ operations, which can lead to 
discomfort for some residents. In [24], the authors proposed a 
scheme to maximize user comfort and minimize energy cost; 
however, the type of electricity pricing scheme and the 
problem of possibly having a large PAR were not mentioned. 
In [25], the authors only maximized the profit of the energy 
provider and the user’s payoff; however, they neglected to 
consider the security and stability of the energy system. 
Compared with the work presented in these previous studies, 
the approach proposed in this paper provides all the advantages 
and functions of the existing schemes. For residents, the 
beneficial features obtained by applying our proposed 
approach are a reduction in the electricity cost and a reduction 
in the delay time rate of home appliances’ operations. In 
addition, a benefit to the utility companies is the reduction of  
PAR, which increases the stability of the entire electricity 
system. Our approach of combining RTP and IBR can satisfy 
all the benefits for both the residents and the utility companies. 
According to the simulation results, we conclude that our 
proposed power scheduling approach using RTP combined 
with the IBR model has been proven to be a better way than 
using the RTP only. Surely, the proposed approach is a reliable 
solution for future EMS in a HAN of a smart grid. 
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