• Title/Summary/Keyword: Energy Consumption Reduction

Search Result 778, Processing Time 0.028 seconds

A Study on Estimating Reduction of Heating Energy and CO2 by Indoor Setting Temperature with Clo (착의량별 실내설정온도에 따른 난방에너지 및 온실가스 저감량 산정 연구)

  • Yoon, Jong-Ho;Lee, Chul-Sung;Kim, Hyo-Jung;Park, Jae-Wan;Shin, U-Chul
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.115-120
    • /
    • 2009
  • The studies for mechanical performance development have been examined to reduce energy consumption in building construction field. However, The energy consumption using in building for heating is impacted by not only system performance but also PMV particularly at temperature and clo. Most energy using in building part is mainly consumed for heating and cooling to keep comfort temperature. Heating energy consumption is bigger than cooling energy in Korea because of temperature difference in winter in comparison with summer at apartment building. This means that energy consumption can be changed by occupancy's comfort setting temperature in apartment building. This study evaluate actual comfort temperature range by clo and examined heating energy consumption by Esp-r and CO2 reduction possibility. The results show that keeping ASHRAE standards can reduce heating energy up to 23%; also, wearing underclothes with ASHRAE standard can reduce heating energy up to 47.8%. Option 4 showing Maximum CO2 emission reduction indicates that kerosene. LNG and electricity can reduce 1.5t, 1.7t, 2.46t respectively in comparison with option 2.

  • PDF

A Study on Heating Energy Monitoring of a Rural Detached House Applying Passive House Design Components (패시브 하우스 디자인 요소를 적용한 농촌지역 단독주거건물의 난방에너지 모니터링 연구)

  • Cho, Kyung-Min;Lee, Tae-Goo;Han, Young-Hae
    • KIEAE Journal
    • /
    • v.13 no.2
    • /
    • pp.39-46
    • /
    • 2013
  • Recently, the field of construction is putting a variety of effort into reducing CO2, since global warming is being accelerated due to climate changes and the increase of greenhouse gas. For reduction of CO2 in the field of construction, it is required to make plans to cut down heating energy of buildings and especially, it is urgently needed to cut down energy of residential buildings in rural area where occupies the majority of consumption of petroleum-based energy sources. Therefore, this research compared and analyzed the actual energy consumption, by evaluating energy performance of a detached house applying passive house design components for reduction of energy. As the result, energy consumption showed remarkable differences, according to the operation of a heat recovery ventilation unit which is one of passive house design components, and building energy consumption displayed remarkable differences, too, depending on the difference of airtightness performance during building energy simulation conducted in process of design. Based on these results, the importance of airtightness performance of passive house was verified. The result of the actual measurement of energy consumption demonstrated that LNG was most economical amongst several heat resources yielded, on the basis of LPG source energy consumption measured within a certain period of time, and it was followed by kerosene. LPG was analyzed to have a low economic efficiency, when used for heating.

An Analysis of the Building Energy Demand of Rural House and Passive type House - An Analysis of the Airtightness and Window system Performance according to using PHPP (기존 농촌주택과 패시브형 주택의 에너지 요구량 비교분석 - PHPP분석을 통한 주택의 기밀성 및 창호성능 분석을 중심으로)

  • Cho, Kyung-Min;Lee, Tae-Goo;Kim, Joo-Soo
    • KIEAE Journal
    • /
    • v.11 no.4
    • /
    • pp.55-61
    • /
    • 2011
  • Due to global warming issues caused by climate changes which are internationally being highlighted, recently, there are lots of efforts under way to reduce energy consumption in various fields. Currently, 25 percent of energy consumption in Korea are being generated from buildings and especially, nearly 54 percent of them are being consumed by households. This study, therefore, aims to consider energy consumption status in the existing rural houses and analyze structure system performance, window system performance and air-permeability of domestic passive-type buildings using PHPP which is an analysis program of building energy to improve energy consumption problems in rural areas. Then, energy reduction plans in rural houses were proposed, by comparing and analyzing energy reduction of the existing rural houses, based on these data.

The Effectiveness of New Power Generation and Energy Demand Reduction to Achieve Greenhouse Gas Reduction Goals in Building Area

  • Park, Seong-Cheol;Kim, Hwan-Yong;Song, Young-Hak
    • Architectural research
    • /
    • v.18 no.2
    • /
    • pp.59-64
    • /
    • 2016
  • Since the massive power outages that hit across the nation in September 2011, a growing imbalance between energy supply and demand has led to a severe backup power shortage. To overcome the energy crisis which is annually repeated, a policy change for deriving energy supply from renewable energy sources and a demand reduction strategy has become essential. Buildings account for 18% of total energy consumption and have great potential for energy efficiency improvements; it is an area considered to be a highly effective target for reducing energy demand by improving buildings' energy efficiency. In this regard, retrofitting buildings to promoting environmental conservation and energy reduction through the reuse of existing buildings can be very effective and essential for reducing maintenance costs and increasing economic output through energy savings. In this study, we compared the energy reduction efficiency of national power energy consumption by unit production volume based on thermal power generation, renewable energy power generation, and initial and operating costs for a building retrofit. The unit production was found to be 13,181GWh/trillion won for bituminous coal-fired power generation, and 5,395GWh/trillion won for LNG power generation, implying that LNG power generation seemed to be disadvantageous in terms of unit production compared to bituminous coal-fired power generation, which was attributable to a difference in unit production price. The unit production from green retrofitting increased to 38,121GWh/trillion won due to the reduced energy consumption and benefits of greenhouse gas reduction costs. Renewable energy producing no greenhouse gas emissions during power generation and showed the highest unit production of 75,638GWh/trillion won, about 5.74 times more effective than bituminous coal-fired power generation.

The Analysis on the Evaluation Items of Korea Green Building Certification Criteria by the Case Studies of Collective Housing (국내 공동주택 부문의 친환경건축 인증 평가 항목 및 사례 분석)

  • Kim, Chang-Sung
    • KIEAE Journal
    • /
    • v.13 no.2
    • /
    • pp.93-100
    • /
    • 2013
  • Many countries have made their best to protect the earth from global warming and to find solutions for the reduction of carbon dioxide emittion and energy consumption. Especially, buildings have emitted over 40% of carbon dioxide against whole quantities emitted to the earth. Therefore, the reduction of carbon dioxide emitted from buildings require to save the earth environment. Energy consumption of buildings in Korea has reached 24% of total energy quantities, and energy consumption of collective housing has been continuously increasing. So, Korea government has also executed the Green Building Certification Criteria(GBCC). The GBCC evaluates the 8 types of buildings - collective housing, office, school, etc - to certificate the green building. In this paper, the evaluation items of collective housing in GBCC were reviewed to be used as the reference data for future revisions by the case studies. According to the results of this study, current version of GBCC requires additional revisions about the evaluations of energy consumption monitoring, commissioning and existing building.

A Case Study of GHG Reduction Based on Electricity Consumption Pattern of Individual Rooms : In case of Seoul National University (실별 전력 소비패턴에 의거한 온실가스 감축 잠재량 산정 - 서울대학교 관악 캠퍼스를 대상으로 -)

  • Kim, Seok-Young;Park, Moonseo;Lee, Hyun-Soo;Kim, Sooyoung;Jung, Hye-Jin
    • Korean Journal of Construction Engineering and Management
    • /
    • v.14 no.4
    • /
    • pp.55-64
    • /
    • 2013
  • As GHG target management is introduced in Korea, designated establishment takes responsibilities to reduce more than 30% of expected GHG emission until 2020. Although decreasing GHG has been requested to universities which consume great amount of energy, there are difficulties to apply high cost countermeasures. Therefore, this research suggest a low cost, easily-applicable energy saving method, and derive potential GHG reduction amount in the case of SNU, Kwan-ak campus. First of all, 11 rooms of different use were chosen as the samples, and energy consumption in each room was measured. Standard models for each room were built through researching on the electric devices in each room. Moreover, energy consumption was computed for each devices through analyzing the pattern of electricity consumption. 32 GHG reduction technology and action program were chosen, and they were applied to the standard models for individual rooms. Through multiplying energy reduction rate of each program to energy consumption of each electric device, maximum energy reduction of each electric device is derived. Through that, Maximum GHG reduction for individual rooms and each month and the total GHG reduction capacity of Kwan-ak campus were computed. It was found out that approximately $5,311tCO_2$-eq can be reduced, when reduction technology and action program suggested by this research are applied. It appeared 24.48% of requested reduction amount to SNU can be reduced, till 2016.

Simultaneous water and energy saving of wet cooling towers, modeling for a sample building

  • Ataei, Abtin;Choi, Jun-Ki;Hamidzadeh, Zeinab;Bagheri, Navid
    • Advances in environmental research
    • /
    • v.4 no.3
    • /
    • pp.173-181
    • /
    • 2015
  • This article outlines a case study of water and energy savings in a typical building through a modelling process and analysis of simultaneous water-energy saving measures. Wet cooling towers are one of the most important equipments in buildings with a considerable amount of water and energy consumption. A variety of methods are provided to reduce water and energy consumption in these facilities. In this paper, thorough the modeling of a typical building, water and energy consumption are measured. Then, After application of modern methods known to be effective in saving water and energy, including the ozone treatment for cooling towers and shade installation for windows, i.e. fins and overhangs, the amount of water and energy saving are compared with the base case using the Simergy model. The annual water consumption of the building, by more than 50% reduction, has been reached to 500 cubic meters from 1024 cubic meters. The annual electric energy consumption has been decreased from 405,178 kWh to 340,944 kWh, which is about 16%. After modeling, monthly peak of electrical energy consumption of 49,428 has dropped to 40,562 kWh. The reduction of 18% in the monthly peak can largely reduce the expenses of electricity consumption at peak.

A Study on Analysis of Energy Consumption of the Middle School Facilities in Korea (전국 중학교 시설의 에너지 사용실태 분석 연구)

  • Yoon, Jong-Ho;Shin, U-Cheul;Cho, Jin-Il;Park, Jae-Wan;Kim, Hyo-Jung
    • KIEAE Journal
    • /
    • v.10 no.4
    • /
    • pp.45-50
    • /
    • 2010
  • This study for middle school facilities is second following the study of the energy consumption of primary school facilities. There is not on the analysis of the current energy usage for middle school facilities in nations to set goals of energy reduction. Therefore, The purpose of this study is to present various analysis result of energy consumption which is a statistical analysis of domestic middle school facilities in South Korea. As a consequence, each average energy consumption at the domestic middle school facilities analyzed as following after changing as unit 'kWh' only for comparison with every energy source. It represents that the energy consumption of electric power was 183.7MWh(70.2%), gas consumption for heating was 46.5MWh(17.8%), oil consumption was 26.5MWh(10.1%), district energy was 5.1MWh(1.9%). This result describes that consumption of electric power was large greatly and it reflects the expectation that it will climb the demand regarding this energy in the future. In additionally, it analyzed average energy consumption with $74.4kWh/m^2$ by the unit area of air-conditioning and the district which has large energy consumption was Seoul with $91.6kWh/m^2$.

A Study on the Improvement of Energy Efficiency in Warehouses (물류센터의 에너지 효율 개선 방안에 관한 연구)

  • Sun, Jong-Keun;Ryoo, Ho-Sang
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.6
    • /
    • pp.66-72
    • /
    • 2012
  • The main sources of energy consumption in warehouses are MHE(Material Handling Equipment), HVAC(Heating, Ventilating and Air Conditioning) and Lighting. Warehouses in advanced countries raise energy efficiencies with energy consumption diagnosis, technology development and systematic management and improvements for MHE, HVAC and Illuminating, etc. They have managed illuminating system, air conditioning, motor driven system, air circulation method, dock facility, layout, AS/RS, conveyor system and battery management, etc. Ansong Pyeongtaek area investigation resulted that 43.9[%] of enterprises are managing partly energy consumption source. But the data resulted with not substantial management of energy consumption but passive management for only electric bill curtailment. Therefore through survey research & visiting interviews of some companies in Ansong Pyeongtaek area, we understood the status of energy consumption source management and proposed energy efficiency methods on the basis of that results.

Study on Energy Consumption according to Building Envelope Performance and Indoor Temperature (건축물의 외피성능 및 실내온도에 따른 에너지 사용량에 관한 연구)

  • Yoo, Ho-Chun;Kang, Hyun-Gu
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.3
    • /
    • pp.101-108
    • /
    • 2011
  • This study aims to suggest an energy consumption improvement plan for university buildings through an analysis of energy consumption. Upon a simulation of subject building to interpret energy consumption, it was found that 154.07kWh/$m^2$ of energy is consumpted annually. Improvement of design elements can cut down the energy consumption to 135.61kWh/$m^2$ according to an energy reduction analysis related to envelope performance improvement. Additional improvement of lights and heat exchanger can curtail annual energy consumption to 108.32kWh/$m^2$. Also, an analysis of energy consumption while increasing indoor temperature gradually showed that the two factors are in proportion. $6^{\circ}C$ higher temperature requires over twice of the current energy. Based on this survey result, performance improvement due to building management and envelope elements which influence to building cooling and heating loads can curtail building energy consumption.