• Title/Summary/Keyword: Energy Consumption Minimization

Search Result 68, Processing Time 0.02 seconds

Power Consumption Analysis and Minimization of Electronic Shelf Label System (전자가격표시시스템의 소모전력 분석 및 최소화 방안)

  • Woo, Rinara;Kim, Jungjoon;Seo, Dae-Wha
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.2
    • /
    • pp.75-80
    • /
    • 2014
  • Energy consumption of sensor nodes is minimized because it has limited energy generator in wireless sensor network. Electronic shelf label system is one of application fields using wireless sensor networks. Battery size of small apparatus for displaying price is restricted. Therefore its current consumption have to be minimized. Furthermore the method for minimization of peak current would be considered because life cycle of coin battery used to display or RF is vulnerable to intensity of drain current. In this paper, we analyze current consumption pattern of low-power electronic shelf label system. Then we propose the method for minimization of current consumption by modification of software and hardware. Current consumption of the system using proposed method are approximately 15 to 20 percent lower than existing system and the life cycle of the system is approximately 10 percent higher than existing system.

Minimization of consumption energy for a manipulator with nonlinear friction in PPT motion

  • Izumi, T.;Takase, K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.95-99
    • /
    • 1994
  • Robot engineering is developed mainly in the field of intelligibility such as a manipulation. Considering the popularization of robots in the future, however, a robot should be studied from a viewpoint of saving energy because a robot is a kind of machine with a energy conversion. This paper deals with minimizing an energy consumption of a manipulator which is driven in a point-to-point control method. When a manipulator carries a heavy payload toward gravitation or the links are de-accelerated for positioning, the motors at joints generate electric energy. Since this energy can be regenerated to the source by using a chopper, the energy consumption of a manipulator is only heat loss by an electric and a frictional resistance of the motors. The minimization of the sum of these losses is reduced Lo a two-points boundary-value problem of an non-linear differential equation. The solutions are obtained by the generalized Newton-Raphson method in this paper. The energy consumption due to the optimum angular velocity patterns of two joints of a two-links manipulator is compared with conventional velocity patterns such as quadratic and trapezoid.

  • PDF

A Study on the Energy Saving Plan by the Utilization of transport System -Concerned to Cargo transportation- (수송체계의 효율화를 통한 에너지절약방안에 관한 연구 -화물윤송을 대상으로-)

  • 이석태
    • Journal of the Korean Institute of Navigation
    • /
    • v.9 no.2
    • /
    • pp.27-41
    • /
    • 1985
  • The transportation productivity is the throughput of utility per locations of resources and is able to be brought forth by using transportation mode. Therefore, Oil energy is necessary for using the transportation mode that is mainly consisted of four parts trucks, railroad, ship and aircraft, and Oil quantity used for such modes is not respectively same. Noticing Such a Point, the purpsoe of this paper is to reaserch the transportation mode of convertable cargoes and to minimize energy consumption quantity by adopting such a mode. We must ttend to Energy-Intensity, Transportation, Distance and cargo quantity for selecting the transport mode to energy consumption and the minimization of transportation energy consumption is concluded in the next LP Problem. As above mentioned, we can find the solution of Xij by the LP when Xij is transportation cargo per routes, and fullfil the minimization of Energy Consumption.

  • PDF

A Frequency Selection Algorithm for Power Consumption Minimization of Processor in Mobile System (이동형 시스템에서 프로세서의 전력 소모 최소화를 위한 주파수 선택 알고리즘)

  • Kim, Jae Jin;Kang, Jin Gu;Hur, Hwa Ra;Yun, Choong Mo
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.4 no.1
    • /
    • pp.9-16
    • /
    • 2008
  • This paper presents a frequency selection algorithm for minimization power consumption of processor in Mobile System. The proposed algorithm has processor designed low power processor using clock gating method. Clock gating method has improved the power dissipation by control main clock through the bus which is embedded clock block applying the method of clock gating. Proposed method has compared power consumption considered the dynamic power for processor, selected frequency has considered energy gain and energy consumption for designed processor. Or reduced power consumption with decreased processor speed using slack time. This technique has improved the life time of the mobile systems by clock gating method, considered energy and using slack time. As an results, the proposed algorithm reduce average power saving up to 4% comparing to not apply processor in mobile system.

Group Building Based Power Consumption Scheduling for the Electricity Cost Minimization with Peak Load Reduction

  • Oh, Eunsung;Park, Jong-Bae;Son, Sung-Yong
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.1843-1850
    • /
    • 2014
  • In this paper, we investigate a group building based power consumption scheduling to minimize the electricity cost. We consider the demand shift to reduce the peak load and suggest the compensation function reflecting the relationship between the change of the building demand and the occupants' comfort. Using that, the electricity cost minimization problem satisfied the convexity is formulated, and the optimal power consumption scheduling algorithm is proposed based on the iterative method. Extensive simulations show that the proposed algorithm achieves the group management gain compared to the individual building operation by increasing the degree of freedom for the operation.

Equivalent Consumption Minimization Strategy of Fuel Cell Hybrid Vehicles (연료전지 하이브리드 자동차의 ECMS)

  • Zheng, Chun-Hua;Park, Yeong-Il;Lim, Won-Sik;Cha, Suk-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.6
    • /
    • pp.46-51
    • /
    • 2012
  • Fuel Cell Hybrid Vehicles (FCHVs) have become a major topic of interest in the automotive industry owing to recent energy supply and environmental problems. Several types of power management strategies have been developed to improve the fuel economy of FCHVs including optimal control strategy based on optimal control theory, rule-based strategy, and equivalent consumption minimization strategy (ECMS). The ECMS is applied in this study. This strategy is based on the heuristic concept that the usage of the electric energy can be exchanged to equivalent fuel consumption. This strategy is known as one of the promising solutions for real-time control of hybrid vehicles. The ECMS for an FCHV is introduced in this paper as well as the equivalent fuel consumption parameter. The relationship between the battery final state of charge (SOC) and the fuel consumption while changing the equivalent fuel consumption parameter is obtained for three different driving cycles. The function of the equivalent fuel consumption parameter is also discussed.

Heuristic Algorithms for Optimization of Energy Consumption in Wireless Access Networks

  • Lorincz, Josip;Capone, Antonio;Begusic, Dinko
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.4
    • /
    • pp.626-648
    • /
    • 2011
  • Energy consumption of wireless access networks is in permanent increase, which necessitates development of more energy-efficient network management approaches. Such management schemes must result with adaptation of network energy consumption in accordance with daily variations in user activity. In this paper, we consider possible energy savings of wireless local area networks (WLANs) through development of a few integer linear programming (ILP) models. Effectiveness of ILP models providing energy-efficient management of network resources have been tested on several WLAN instances of different sizes. To cope with the problem of high computational time characteristic for some ILP models, we further develop several heuristic algorithms that are based on greedy methods and local search. Although heuristics obtains somewhat higher results of energy consumption in comparison with the ones of corresponding ILP models, heuristic algorithms ensures minimization of network energy consumption in an amount of time that is acceptable for practical implementations. This confirms that network management algorithms will play a significant role in practical realization of future energy-efficient network management systems.

On the Trade-Off between Throughput Maximization and Energy Consumption Minimization in IEEE 802.11 WLANs

  • Serrano, Pablo;Hollick, Matthias;Banchs, Albert
    • Journal of Communications and Networks
    • /
    • v.12 no.2
    • /
    • pp.150-157
    • /
    • 2010
  • Understanding and optimizing the energy consumption of wireless devices is critical to maximize the network lifetime and to provide guidelines for the design of new protocols and interfaces. In this work, we first provide an accurate analysis of the energy performance of an IEEE 802.11 WLAN, and then we derive the configuration to optimize it. We further analyze the impact of the energy configuration of the stations on the throughput performance, and we discuss under which circumstances throughput and energy efficiency can be both jointly maximized and where they constitute different challenges. Our findings are that, although an energy-optimized configuration typically yields gains in terms of throughput as compared against the default configuration, it comes with a reduction in performance as compared against the maximum-bandwidth configuration, a reduction that depends on the energy parameters of the wireless interface.

An Approach to maximize throughput for Energy Efficient Cognitive Radio Networks

  • Ghosh, Jyotirmoy;Koo, Insoo
    • International Journal of Advanced Culture Technology
    • /
    • v.1 no.2
    • /
    • pp.18-23
    • /
    • 2013
  • In this paper, we consider the problem of designing optimal sensing time and the minimization of energy consumption in the Cognitive radio Network. Trade-off between throughput and the sensing time are observed, and the equations are derived for the optimal choice of design variables. In this paper, we also look at the optimization problem involving all the design parameters together. The advantages of the proposed scheme for the spectrum sensing and access process are shown through simulation.

  • PDF

Reinforcement Learning-based Duty Cycle Interval Control in Wireless Sensor Networks

  • Akter, Shathee;Yoon, Seokhoon
    • International journal of advanced smart convergence
    • /
    • v.7 no.4
    • /
    • pp.19-26
    • /
    • 2018
  • One of the distinct features of Wireless Sensor Networks (WSNs) is duty cycling mechanism, which is used to conserve energy and extend the network lifetime. Large duty cycle interval introduces lower energy consumption, meanwhile longer end-to-end (E2E) delay. In this paper, we introduce an energy consumption minimization problem for duty-cycled WSNs. We have applied Q-learning algorithm to obtain the maximum duty cycle interval which supports various delay requirements and given Delay Success ratio (DSR) i.e. the required probability of packets arriving at the sink before given delay bound. Our approach only requires sink to compute Q-leaning which makes it practical to implement. Nodes in the different group have the different duty cycle interval in our proposed method and nodes don't need to know the information of the neighboring node. Performance metrics show that our proposed scheme outperforms existing algorithms in terms of energy efficiency while assuring the required delay bound and DSR.