• Title/Summary/Keyword: Energies

Search Result 2,433, Processing Time 0.025 seconds

Molecular Dynamics Simulation of Al2O3 Grain Boundaries with CaAl2Si2O8 as Interface Phase (CaAl2Si2O8를 입계상으로 가지는 Al2O3 계면의 분자동력학 시뮬레이션)

  • Shin, Soon-Gi
    • Korean Journal of Materials Research
    • /
    • v.16 no.2
    • /
    • pp.92-98
    • /
    • 2006
  • Molecular dynamics simulations were performed to study interface structures between an $Al_2O_3$ crystalline phase and a interface phase of $CaAl_2Si_2O_8$. We calculated atomic structures and excess interface energies in systems with different thicknesses of the interface film. It was found that excess interface energies at first readily decreased with increasing film thickness, but increased for larger thicknesses of more than 2 nm. The excess energies of $Al_2O_3/CaAl_2Si_2O_8$ interfaces exhibit a minimum at a thickness around 1 nm. In this range of film thicknesses, the atoms in the interface film show a short-range ordered structure and slow diffusion rather than the random structure and rapid diffusion expected to an observation of an equilibrium thickness for interface films in ceramics.

Understanding Drug-Protein Interactions in Escherichia coli FabI and Various FabI Inhibitor Complexes

  • Lee, Han-Myoung;Singh, N. Jiten
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.162-168
    • /
    • 2011
  • Many ligands have been experimentally designed and tested for their activities as inhibitors against bacterial enoyl-ACP reductase (FabI), ENR. Here the binding energies of the reported ligands with the E. coli ENR-$NAD^+$ were calculated, analyzed and compared, and their molecular dynamics (MD) simulation study was performed. IDN, ZAM and AYM ligands were calculated to have larger binding energies than TCL and IDN has the largest binding energy among the considered ligands (TCL, S54, E26, ZAM, AYM and IDN). The contribution of residues to the ligand binding energy is larger in E. coli ENR-NAD+-IDN than in E. coli ENR-$NAD^+$-TCL, while the contribution of $NAD^+$ is smaller for IDN than for TCL. The large-size ligands having considerable interactions with residues and $NAD^+$ have many effective functional groups such as aromatic $\pi$ rings, acidic hydroxyl groups, and polarizable amide carbonyl groups in common. The cation-$\pi$ interactions have large binding energies, positively charged residues strongly interact with polarisable amide carbonyl group, and the acidic phenoxyl group has strong H-bond interactions. The residues which have strong interactions with the ligands in common are Y146, Y156, M159 and K163. This study of the reported inhibitor candidates is expected to assist the design of feasible ENR inhibitors.

A Study on Investigating Actual State of Operation of Building Integrated Photovoltaic for the Spread of BIPV (건축물에 적용된 태양광발전시스템의 운전실태 조사 및 보급 확대에 관한 연구)

  • Kim, Byung-Joon;Kim, Ju-Young;Hong, Won-Hwa
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2005.11a
    • /
    • pp.327-330
    • /
    • 2005
  • Today, the need for alternative energy has increased due to the global environmental problems and energy depletion. In order to solve a global environmental matter and an energy issue simultaneously, the application of the renewable energies in building has been constantly demanded. therefore, we must develop new energy resources that are abundant and provide substitutes for fossil fuels and we must study the application method of the renewable energies in building. Among renewable energies, the solar energy(photovoltaic system) is clean, inexhaustible, and available everywhere in the world and is judged to have the application possibility in building. Daegu city has a plan of putting a photovoltaic system on large buildings. For instance, EXCO, exhibition and convention building, and dormitory in Kyungpook National University, Dongho elementary school, Osan building in Keimyung University, Young korea academy in Daegu, are on the process of having a photovoltaic system. Therefore a study on the performance of photovoltaic system is important for the system design and maintenance. this paper describes the first invest cost, and performance test of the 95kW utility-interactive photovoltaic power system.

  • PDF

Effect of B-Cation Doping on Oxygen Vacancy Formation and Migration in LaBO3: A Density Functional Theory Study

  • Kwon, Hyunguk;Park, Jinwoo;Kim, Byung-Kook;Han, Jeong Woo
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.5
    • /
    • pp.331-337
    • /
    • 2015
  • $LaBO_3$ (B = Cr, Mn, Fe, Co, and Ni) perovskites, the most common perovskite-type mixed ionic-electronic conductors (MIECs), are promising candidates for intermediate-temperature solid oxide fuel cell (IT-SOFC) cathodes. The catalytic activity on MIEC-based cathodes is closely related to the bulk ionic conductivity. Doping B-site cations with other metals may be one way to enhance the ionic conductivity, which would also be sensitively influenced by the chemical composition of the dopants. Here, using density functional theory (DFT) calculations, we quantitatively assess the activation energies of bulk oxide ion diffusion in $LaBO_3$ perovskites with a wide range of combinations of B-site cations by calculating the oxygen vacancy formation and migration energies. Our results show that bulk oxide ion diffusion dominantly depends on oxygen vacancy formation energy rather than on the migration energy. As a result, we suggest that the late transition metal-based perovskites have relatively low oxygen vacancy formation energies, and thereby exhibit low activation energy barriers. Our results will provide useful insight into the design of new cathode materials with better performance.

Hardness Profiles of Porcelain Insulators by Climate Changes (기후 변화에 따른 자기 애자의 시멘트 경도 변화)

  • Lee, Joohyun;Kim, Hong-Sik;Kim, Joondong;Choi, In-Hyuk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.1
    • /
    • pp.24-28
    • /
    • 2018
  • Insulators used in overhead transmission lines are continuously exposed to a number of mechanical and electrical stresses owing to external environmental factors, resulting in corrosion, reduction in durability, and deterioration. Widely used porcelain insulators are fabricated with cement and porcelain and are especially common in Korea. Changes in the hardness and chemical reactivity of the cement increase the leakage and fault currents and increase the possibility of flashover due to insulation breakdown. Therefore, it is important to evaluate the durability and defects of porcelain insulators. Studies on the reliability of various evaluation methods are needed to prevent accidents by accurately determining the replacement timing and potential defects in porcelain insulators. In this study, the hardness of the cement part of the porcelain insulator was measured using the Vickers hardness test and its composition was analyzed by energy dispersive spectroscopy and X-ray diffraction analysis. The performance of the insulators was compared in two different regions with varying climatic conditions. This study presents an evaluation method of the defects in porcelain insulators by measuring humidity, which can also be used to assess the reliability of the insulators.

Density Functional Theory Studies on the Electrophilic versus Electron Transfer Mechanisms of Aryl Vinyl Ethers

  • 김왕기;손창국;임선희;이순기;김창곤;이익춘
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.10
    • /
    • pp.1177-1180
    • /
    • 1999
  • The ab initio SCF MO and density functional theory (DFT) studies are carried out on the electrophilic (1a) and electron transfer (1b) addition reactions to the vinyl double bond of aryl vinyl sulfides and ethers. In the electrophilic addition processes, a double bond shift from C3 = C4 to X = C3 occurs with occupation number (1.97) close to the normal two. Due to this shift direct conjugation between the cationic center, X = S or O, and the para electron-donor substituent becomes impossible so that the reaction energies (or log K) are correlated with σ rather than σ+. By contrast, radical cation formation leads to delocalization of the SOMO, a lone-pair πorbital on X, with four major resonance structures in which cationic charge as well as spin density is delocalized over C4 , X and C7 atoms. As a result, partial πbonds are formed over C1 -X and C3 - C4 with occupation numbers (0.82) lower than one. In two of the cannonical structures, III(Ⅹ) and III(X+), direct conjugation between the cationic center, X, and the para substituent is achieved so that a better correlation with σ+ rather than σis obtained. The SCF MO energies at the HF/3-21G* and HF/6-31G* levels lead to very much inferior Hammett correlations in the σ/ σ+ diagnostic criterion. In contrast, the ρvalues evaluated with the DFT energies can give reliable diagnostic distinction between the two addition mechanisms.

Theoretical Studies of the Low-Lying Electronic States of Diazirine and 3,$3^{\prime} $-Dimenthyldiazirine

  • 한민수;조한국;정병서
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.11
    • /
    • pp.1281-1287
    • /
    • 1999
  • The low-lying electronic states of diazirine and 3,3'-dimethyldiazirine have been studied by high level ab initio quantum chemical methods. The equilibrium geometries of the ground state and the first excited singlet and triplet states have been optimized using the Hartree-Fock (HF) and complete active space SCF (CASSCF) methods, as well as using the Møller-Plesset second order perturbation (MP2) theory and the single configuration interaction (CIS) theory. It was found that the first excited singlet state is of 1 B1 symmetry resulting from the n- π* transition, while the first excited triplet state is of 3 B2 symmetry resulting from the π- π* transition. The harmonic vibrational frequencies have been calculated at the optimized geometry of each electronic state, and the scaled frequencies have been compared with the experimental frequencies available. The adiabatic and vertical transition energies from the ground electronic state to the low-lying electronic states have been estimated by means of multireference methods based on the CASSCF wavefunctions, i.e., the multiconfigurational quasidegenerate second order perturbation (MCQDPT2) theory and the CASSCF second-order configuration interaction (CASSCF-SOCI) theory. The vertical transition energies have also been calculated by the CIS method for comparison. The computed transition energies, particularly by MCQDPT2, agree well with the experimental observations, and the electronic structures of the molecules have been discussed, particularly in light of the controversy over the existence of the so-called second electronic state.

Efficiency calibration and coincidence summing correction for a NaI(Tl) spherical detector

  • Noureddine, Salam F.;Abbas, Mahmoud I.;Badawi, Mohamed S.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3421-3430
    • /
    • 2021
  • Spherical NaI(Tl) detectors are used in gamma-ray spectrometry, where the gamma emissions come from the nuclei with energies in the range from a few keV up to 10 MeV. A spherical detector is aimed to give a good response to photons, which depends on their direction of travel concerning the detector center. Some distortions in the response of a gamma-ray detector with a different geometry can occur because of the non-uniform position of the source from the detector surface. The present work describes the calibration of a NaI(Tl) spherical detector using both an experimental technique and a numerical simulation method (NSM). The NSM is based on an efficiency transfer method (ETM, calculating the effective solid angle, the total efficiency, and the full-energy peak efficiency). Besides, there is a high probability for a source-to-detector distance less than 15 cm to have pulse coincidence summing (CS), which may occur when two successive photons of different energies from the same source are detected within a very short response time. Therefore, γ-γ ray CS factors are calculated numerically for a 152Eu radioactive cylindrical source. The CS factors obtained are applied to correct the measured efficiency values for the radioactive volumetric source at different energies. The results show a good agreement between the NSM and the experimental values (after correction with the CS factors).

Experimental Evaluation of Scattered X-Ray Spectra due to X-Ray Therapeutic and Diagnosis Equipment for Eye Lens Dosimetry of Medical Staff

  • Kowatari, Munehiko;Nagamoto, Keisuke;Nakagami, Koich;Tanimura, Yoshihiko;Moritake, Takashi;Kunugita, Naoki
    • Journal of Radiation Protection and Research
    • /
    • v.47 no.1
    • /
    • pp.39-49
    • /
    • 2022
  • Background: For proper monitoring of the eye lens dose, an appropriate calibration factor of a dosimeter and information about the mean energies of X-rays are indispensable. The scattered X-ray energy spectra should be well characterized in medical practices where eye lenses of medical staffs might be high. Materials and Methods: Scattered X-ray energy spectra were experimentally derived for three different types of X-ray diagnostic and therapeutic equipment, i.e., the computed tomography (CT) scan, the angiography and the fluoroscopy. A commercially available CdZnTe (CZT) spectrometer with a lead collimator was employed for the measurement of scattered X-rays, which was performed in the usual manner. Results and Discussion: From the obtained energy spectra, the mean energies of the scattered X-rays lied between 40 and 60 keV. This also agreed with that obtained by the conventional half value layer method. Conclusion: The scattered X-rays to which medical workers may be exposed in the region around the eyes were characterized by means of spectrometry. The obtained mean energies of the scattered X-rays were found to match the flat region of the dosimeter response.

Measurements of proton beam flux and energy of APEP using foil activation technique

  • Wenlin Li;Qifan Dong;Hantao Jing;Li Ou;Zhixin Tan;Sixuan Zhuang;Qingbiao Wu
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.328-334
    • /
    • 2024
  • The activation method of metallic foils is an important technique to measure the flux and energy of proton beams. In this paper, the method was used to measure the CSNS APEP proton flux at seven nominal proton energies ranging from 10 MeV to 70 MeV for beam spot sizes of the 20 mm × 20 mm and 50 mm × 50 mm. The reactions of natTi(p, x)48V, natNi(p, x)57Ni, natCu(p, x)58Co, and 27Al(p, x)24Na were employed to measure the proton beam flux with a range of 107-109 p/cm2/s. Furthermore, we also proposed a method using the activity ratio with a stacked-foil target to determine the energy spread of a Gaussian-like distribution for different nominal proton energies. The optimal combinations of Al, Cu, Ti, Ni, Mo, Fe, Nb, and In foils were adopted for the proton energies. The measured energy spreads for degraded beams of 30 MeV-70 MeV were found to be smaller than 10.00%.