Browse > Article
http://dx.doi.org/10.5012/bkcs.2011.32.1.162

Understanding Drug-Protein Interactions in Escherichia coli FabI and Various FabI Inhibitor Complexes  

Lee, Han-Myoung (Center for Superfunctional Materials, Department of Chemistry, Pohang University of Science and Technology)
Singh, N. Jiten (Center for Superfunctional Materials, Department of Chemistry, Pohang University of Science and Technology)
Publication Information
Abstract
Many ligands have been experimentally designed and tested for their activities as inhibitors against bacterial enoyl-ACP reductase (FabI), ENR. Here the binding energies of the reported ligands with the E. coli ENR-$NAD^+$ were calculated, analyzed and compared, and their molecular dynamics (MD) simulation study was performed. IDN, ZAM and AYM ligands were calculated to have larger binding energies than TCL and IDN has the largest binding energy among the considered ligands (TCL, S54, E26, ZAM, AYM and IDN). The contribution of residues to the ligand binding energy is larger in E. coli ENR-NAD+-IDN than in E. coli ENR-$NAD^+$-TCL, while the contribution of $NAD^+$ is smaller for IDN than for TCL. The large-size ligands having considerable interactions with residues and $NAD^+$ have many effective functional groups such as aromatic $\pi$ rings, acidic hydroxyl groups, and polarizable amide carbonyl groups in common. The cation-$\pi$ interactions have large binding energies, positively charged residues strongly interact with polarisable amide carbonyl group, and the acidic phenoxyl group has strong H-bond interactions. The residues which have strong interactions with the ligands in common are Y146, Y156, M159 and K163. This study of the reported inhibitor candidates is expected to assist the design of feasible ENR inhibitors.
Keywords
Enoyl-acyl carrier protein reductase; ENR inhibitor; ENR-$NAD^+$-ligand interaction; Molecular dynamics;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
  • Reference
1 Kim, K. S.; Suh, S. B.; Kim, J. C.; Hong, B. H.; Lee, E. C.; Yun, S.; Tarakeshwar, P.; Lee, J. Y.; Kim, Y.; Ihm, H.; Kim, H. G.; Lee, J. W.; Kim, J. K.; Lee, H. M.; Kim, D.; Cui, C.; Youn, S. J.; Chung, H. Y.; Choi, H. S.; Lee, C.-W.; Cho, S. J.; Cho, J.-H. J. Am. Chem. Soc. 2002, 124, 14268.   DOI   ScienceOn
2 Lee, E. C.; Hong, B. H.; Lee, J. Y.; Kim, J. C.; Kim, D.; Kim, Y.; Tarakeshwar, P.; Kim, K. S. J. Am. Chem. Soc. 2005, 127, 4530.   DOI   ScienceOn
3 Lee, E. C.; Kim, D.; Jurecka, P.; Tarakeshwar, P.; Hobza, P.; Kim, K. S. J Phys. Chem. A 2007, 111, 3446.   DOI   ScienceOn
4 Seefeld, M. A.; Miller, W. H.; Newlander, K. A.; Burgess, W. J.; Payne, D. J.; Rittenhouse, S. F.; Moore, T. D.; DeWolf, W. E., Jr.; Keller, P. M.; Qiu, X.; Janson, C. A.; Vaidya, K.; Fosberry, A. P.; Smyth, M. G.; Jaworski, D. D.; Slater-Radosti, C.; Huffman, W. F. Bioorg. Med. Chem. Lett. 2001, 11, 2241.   DOI   ScienceOn
5 Bayly, C. I.; Cieplak, P.; Cornell, W. D.; Kollman, P. A. J. Phys. Chem. 1993, 97, 10269.   DOI   ScienceOn
6 Miller, W. H.; Seefeld, M. A.; Newlander, K. A.; Uzinskas, I. N.; Burgess, W. J.; Heerding, D. A.; Yuan, C. C. K.; Head, M. S.; Payne, D. J.; Rittenhouse, S. F.; Moore, T. D.; Pearson, S. C.; Berry, V.; DeWolf, W. E., Jr.; Keller, P. M.; Polizzi, B. J.; Qiu, X.; Janson, C. A.; Huffman, W. F. J. Med. Chem. 2002, 45, 3246.   DOI   ScienceOn
7 Seefeld, M. A.; Miller, W. H.; Newlander, K. A.; Burgess, W. J.; DeWolf, W. E., Jr.; Elkins, P. A.; Head, M. S.; Jakas, D. R.; Janson, C. A.; Keller, P. M.; Manley, P. J.; Moore, T. D.; Payne, D. J.; Pearson, S.; Polizzi, B. J.; Qiu, X.; Rittenhouse, S. F.; Uzinskas, I. N.; Wallis, N. G.; Huffman, W. F. J. Med. Chem. 2003, 46, 1627.   DOI   ScienceOn
8 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B. et al. GAUSSIAN 09, Revision A.02, Gaussian, Inc.: Pittsburgh, PA, 2009.
9 Holmberg, N.; Ryde, U.; Bulow, L. Protein Eng. 1999, 12, 851.   DOI
10 Case, D. A.; Darden, T. A.; Cheatham, T. E., III.; Simmerling, C. L.; Wang, J.; Duke, R. E.; Luo, R.; Merz, K. M.; Pearlman, D. A.; Crowley, M.; Wlker, R. C.; Zhang, W.; Wang, B.; Hayik, S.; Roitberg, A.; Seabra, G.; Wong, K. F.; Paesani, F.; Wu, X.; Brozell, S.; Tsui, V.; Gohlke, H.; Yang, L.; Tan, C.; Mongan, J.; Hornak, V.; Cui, G.; Beroza, P.; Mathews, D. H.; Schafmeister, C.; Ross, W. S.; Kollman, P. A. AMBER 9, University of California: San Francisco, 2006.
11 Kim, K. S.; Tarakeshwar, P.; Lee, J. Y. Chem. Rev. 2000, 100, 4145.   DOI   ScienceOn
12 Singh, N. J.; Min, S. K.; Kim, D. Y.; Kim, K. S. J. Chem. Theory. Comput. 2009, 5, 515.   DOI
13 Kim, K. S.; Lee, J. Y.; Lee, S. J.; Ha, T. K.; Kim, D. H. J. Am. Chem. Soc. 1994, 116, 7399.   DOI
14 Hunter, C. A.; Sanders, J. K. M. J. Am. Chem. Soc. 1990, 112, 5525.   DOI
15 Perozzo, R.; Kuo, M.; bir Singh Sidhu, A.; Valiyaveettil, J. T.; Bittman, R.; Jacobs, Jr., W. R.; Fidock, D. A.; Sacchettini, J. C. J. Biol. Chem. 2002, 277, 13106.   DOI   ScienceOn
16 McMurry, L. M.; McDermott, P. F.; Levy, S. B. Antimicrob. Agents Chemother. 1999, 43, 711.   DOI   ScienceOn
17 McMurray, L. M.; Oethinger, M.; Levy, S. B. Nature 1998, 394, 531.   DOI   ScienceOn
18 Heath, R. J.; Yu, Y. T.; Shapiro, M. A.; Olson, E.; Rock, C. O. J. Biol. Chem. 1998, 273, 30316.   DOI
19 Levy, C. W.; Roujeinikova, A.; Sedelnikova, S.; Baker, P. J.; Stuitje, A. R.; Slabas, A. R.; Rice, D. W.; Rafferty, J. B. Nature 1999, 398, 383.   DOI   ScienceOn
20 Slater-Radosti, C.; Van Aller, G.; Greenwood, R.; Nicholas. R.; Keller, P. M.; DeWolf, W. E., Jr.; Fan, F.; Payne, D. J.; Jaworski, D. D. J. Antimicrob. Chemother. 2001, 48, 1.   DOI   ScienceOn
21 Levy, S. B. Emerg. Infect. Dis. 2001, 7, 512.   DOI
22 Qiu, X.; Janson, C. A.; Court, R. I.; Smyth, M. G.; Payne, D. J.; Abdel-Meguid, S. S. Protein Sc. 1999, 8, 2529.
23 Takahata, S.; Iida, M.; Yoshida, T.; Kumura, K.; Kitagawa, H.; Hoshiko, S. J. Antibiol. 2007, 60, 123.   DOI
24 Oliveira, J. S.; Pereira, J. H.; Canduri, F.; Rodrigues, N. C.; de Souza, O. N.; de Azevedo, W. F.; Basso, L. A.; Santos, D. S. J. Mol. Biol. 2006, 359, 646.   DOI   ScienceOn
25 Baldock, C.; Rafferty, J. B.; Sedelnikova, S. E.; Bithell, S.; Stuitje, A. R.; Slabas, A. R.; Rice, D. W. Acta Cryst. 1996, D52, 1181.
26 Heerding, D. A.; Chan, G.; Dewolf, W. E., Jr.; Fosberry, A. P.; Janson, C. A.; Jaworski, D. D.; McManus, E.; Miller, W. H.; Moore, T. D.; Payne, D. J.; Qiu, X.; Rittenhouse, S. F.; Slater-Radosti, C.; Smith, W.; Takata, D. T.; Vaidya, K. S.; Yuan, C. C. K.; Huffman, W. F. Bioorg. Med. Chem. Lett. 2001, 11, 2061.   DOI   ScienceOn
27 Priyadarshi, A.; Kim, E. E.; Hwang, K. Y. Proteins 2010, 78, 480.   DOI   ScienceOn
28 Kruh, N. A.; Borgaro, J. G.; Ruzsicska, B. P.; Xu, H.; Tonge, P. J. J. Biol. Chem. 2008, 283, 31719.   DOI   ScienceOn
29 Baldock, C.; Rafferty, J. B.; Sedelnikova, S. E.; Baker, P. J.; Stuitje, A. R.; Slabas, A. R.; Hawkes, T. R.; Rice, D. W. Science 1996, 274, 2107.   DOI   ScienceOn
30 Heath, R. J.; Li, J.; Roland, G. E.; Rock, C. O. J. Biol. Chem. 2000, 275, 4654.   DOI   ScienceOn
31 Gagneux, S.; Long, C. D.; Small, P. M.; Van, T.; Schoolnik, G. K.; Bohannan, B. J. M. Science 2006, 312, 1944.   DOI   ScienceOn
32 Hall, N.; Karras, M.; Raine, J. D.; Carlton, J. M.; Kooij, T. W. A.; Berriman, M.; Florens, L.; Janssen, C. S.; Pain, A.; Christophides, G. K.; James, K.; Rutherford, K.; Harris, B.; Harris, D.; Churcher, C.; Quail, M. A.; Ormond, D.; Doggett, J.; Trueman, H. E.; Mendoza, J.; Bidwell, S. L.; Rajandream, M. A.; Carucci, D. J.; Yates, J. R.; Kafatos, F. C.; Janse, C. J.; Barrell, B.; Turner, C. M. R.; Waters, A. P.; Sinden, R. E. Science 2005, 307, 82.   DOI   ScienceOn
33 Kapoor, M.; Gopalakrishnapai, J.; Surolia, N.; Surolia, A. Biochem. J. 2004, 381, 735.   DOI   ScienceOn