• 제목/요약/키워드: Endothelial cell injury

검색결과 88건 처리시간 0.03초

흰쥐소장 점막의 허혈재관류손상에서 프로스타글란딘 E1이 세포자멸사에 미치는 영향 (The Effect of Prostaglandin E1 on Apoptosis Induced by Ischemia Reperfusion Injury in Rat Intestinal Mucosa)

  • 배태희;김승홍;김철규;김한구;김우섭
    • Archives of Plastic Surgery
    • /
    • 제32권3호
    • /
    • pp.369-375
    • /
    • 2005
  • Apoptosis is a physiologic or programmed cell death process which is controlled by genes. It is essential for the function and the appropriate development of multicellular organism. It is also thought to be one of the main mechanisms of cell death in ischemic tissues. The effect of prostaglandin $E_1$($PGE_1$) is proven to be useful in the recovery of ischemic changes by inducing vasodilation of peripheral vessels and platelet disaggregation. $PGE_1$ is also known to suppress apoptosis in human liver sinusoidal endothelial cell from ischemia-reperfusion injury. The purpose of this study is to evaluate the effects of $PGE_1$ on the apoptosis in the ischemia reperfusion injury of rat intestine. Thirty Sprague-Dawley rats were used. In control group(N=15), superior mesenteric artery was occluded for 60 minutes and after removing the vessel clamp, it was reperfused for 60 minutes and harvested. In experimental group(N=15), a jejunal flap was also made as in the control group except for the intraarterial administration of the $PGE_1$ right after clamping the artery and removing the clamp. H&E, TUNEL and immunohistochemical stains for p53, bax, and bcl-2 were performed. There were ischemic changes in gross and microscopic findings in both groups. The apoptotic index was significantly lower in the experimental group($1.29{\pm}0.82$(p=0.003)) than in the control group ($2.33{\pm}0.95$). The rat intestinal ischemia apoptosis by ischemia-reperfusion was partly related to the modulating of bcl-2, bax, and p53 expression. Our results indicate that $PGE_1$ suppresses the apoptosis in the ischemic jejunal flap and this effect is probably the result of a increase in expression of bcl-2.

Role of ginseng in the neurovascular unit of neuroinflammatory diseases focused on the blood-brain barrier

  • Kim, Minsu;Mok, Hyejung;Yeo, Woon-Seok;Ahn, Joong-Hoon;Choi, Yoon Kyung
    • Journal of Ginseng Research
    • /
    • 제45권5호
    • /
    • pp.599-609
    • /
    • 2021
  • Ginseng has long been considered as an herbal medicine. Recent data suggest that ginseng has antiinflammatory properties and can improve learning- and memory-related function in the central nervous system (CNS) following the development of CNS neuroinflammatory diseases such as Alzheimer's disease, cerebral ischemia, and other neurological disorders. In this review, we discuss the role of ginseng in the neurovascular unit, which is composed of endothelial cells surrounded by astrocytes, pericytes, microglia, neural stem cells, oligodendrocytes, and neurons, especially their blood-brain barrier maintenance, anti-inflammatory effects and regenerative functions. In addition, cell-cell communication enhanced by ginseng may be attributed to regeneration via induction of neurogenesis and angiogenesis in CNS diseases. Thus, ginseng may have therapeutic potential to exert cognitive improvement in neuroinflammatory diseases such as stroke, traumatic brain injury, multiple sclerosis, Parkinson's disease, and Alzheimer's disease.

Kidney Toxicity Induced by 13 Weeks Exposure to the Fruiting Body of Paecilomyces sinclairii in Rats

  • Jeong, Mi-Hye;Kim, Young-Won;Min, Jeong-Ran;Kwon, Min;Han, Beom-Suk;Kim, Jeong-Gyu;Jeong, Sang-Hee
    • Toxicological Research
    • /
    • 제28권3호
    • /
    • pp.179-185
    • /
    • 2012
  • Paecilomyces sinclairiis (PS) is known as a functional food or human health supplement. However concerns have been raised about its kidney toxicity. This study was performed to investigate the kidney toxicity of PS by 13 week-oral administration to rats. Blood urea nitrogen (BUN), serum creatinine, and kidney damage biomarkers including beta-2-microglobulin (${\beta}2m$), glutathione S-transferase alpha (GST-${\alpha}$), kidney injury molecule 1 (KIM-1), tissue inhibitor of matrix metalloproteinase 1 (TIMP-1), vascular endothelial growth factor (VEGF), calbindin, clusterin, cystatin C, neutrophil gelatinase-associated lipocalin (NGAL) and osteopontin were measured during or after the treatment of PS. BUN, creatinine and kidney damage biomarkers in serum were not changed by PS. However, kidney cell karyomegaly and tubular hypertrophy were observed dose-dependently with higher severity in males. KIM-1, TIMP-1 and osteopontin in kidney and urine were increased dose dependently in male or at the highest dose in female rats. Increased urinary osteopontin by PS was not recovered at 2 weeks of post-exposure in both genders. Cystatin C in kidney was decreased at all treatment groups but inversely increased in urine. The changes in kidney damage biomarkers were more remarkable in male than female rats. These data indicate that the PS may provoke renal cell damage and glomerular filtration dysfunction in rats with histopathological lesions and change of kidney damage biomarkers in kidney or urine. Kidney and urinary KIM-1 and cystatin C were the most marked indicators, while kidney weight, BUN and creatinine and kidney damage biomarkers in serum were not influenced.

Milk Fat Globule-Epidermal Growth Factor VIII Ameliorates Brain Injury in the Subacute Phase of Cerebral Ischemia in an Animal Model

  • Choi, Jong-Il;Kang, Ho-Young;Han, Choongseong;Woo, Dong-Hun;Kim, Jong-Hoon;Park, Dong-Hyuk
    • Journal of Korean Neurosurgical Society
    • /
    • 제63권2호
    • /
    • pp.163-170
    • /
    • 2020
  • Objective : Milk fat globule-epidermal growth factor VIII (MFG-E8) may play a key role in inflammatory responses and has the potential to function as a neuroprotective agent for ameliorating brain injury in cerebral infarction. This study aimed to determine the role of MFG-E8 in brain injury in the subacute phase of cerebral ischemia in a rat model. Methods : Focal cerebral ischemia was induced in rats by occluding the middle cerebral artery with the modified intraluminal filament technique. Twenty-four hours after ischemia induction, rats were randomly assigned to two groups and treated with either recombinant human MFG-E8 or saline. Functional outcomes were assessed using the modified Neurological Severity Score (mNSS), and infarct volumes were evaluated using histology. Anti-inflammation, angiogenesis, and neurogenesis were assessed using immunohistochemistry with antibodies against ionized calcium-binding adapter molecule 1 (Iba-1), rat endothelial cell antigen-1 (RECA-1), and bromodeoxyuridine (BrdU)/doublecortin (DCX), respectively. Results : Our results showed that intravenous MFG-E8 treatment did not reduce the infarct volume; however, the mNSS test revealed that neurobehavioral deficits were significantly improved in the MFG-E8-treated group than in the vehicle group. Immunofluorescence staining revealed a significantly lower number of Iba-1-positive cells and higher number of RECA-1 in the periinfarcted brain region, and significantly higher numbers of BrdU- and DCX-positive cells in the subventricular zone in the MFG-E8-treated group than in the vehicle group. Conclusion : Our findings suggest that MFG-E8 improves neurological function by suppressing inflammation and enhancing angiogenesis and neuronal proliferation in the subacute phase of cerebral infarction.

근타박상시 치료용 초음파가 혈관내피성장인자와 Substance-P 발현에 미치는 효과에 대한 면역조직화학적 연구 (An Immunohistochemical Study of Effects of Therapeutic Ultrasound on the Expression of VEGF and Substance-P in Muscle Contusion Injury)

  • 김용수;오태영;김석범
    • The Journal of Korean Physical Therapy
    • /
    • 제15권4호
    • /
    • pp.46-64
    • /
    • 2003
  • Therapeutic angiogenesis is the controlled induction or stimulation of new blood vessel formation to reduce unfavourable tissue effects caused by local hypoxia and to enhance tissue repair. Therapeutic ultrasound can be considered as a physical agent to deliver therapeutic angiogenesis. The purpose of this study was to evaluate the effect of therapeutic ultrasound after muscle contusion injury by observed immunoreactivity of vascular endothelial growth factor(VEGF) that plays an important role in angiogenesis and substance-P in pain transmission. Ultrasound irradiation(1MHz, $1W/cm^2$, continuous mode, treatment time 5 min) was applied through water submersion technique to 1 limb daily by kept off 5cm from muscle belly of gastrocnemius. The result of this study were as follows. 1. In morphological observation, there were no significant changes excepts of 7 days. At 7 days, granular tissue viewed abundantly in control group. In other groups, general feature were increased interspace of muscle fiber; centronucleated muscle fiber; collapsed of muscle and nerve tissue; appeared inflammatory cell. 2. The VEGF was expressed in interspace of muscle fiber. Especially, at 7 days in experimental group, VEGF was showed in connective tissue surrounding gastrocnemius muscle. 3. The VEGF was higher expressed in experimental group at 2 and 3 days, but in control group at 7 days. These data suggest therapeutic ultrasound enhanced production of VEGF in the early day relatively, therefore stimulated angiogenesis in the skeletal muscle induced contusion injury. Also therapeutic ultrasound may stimulate pain relief by diminish of substance-P in dorsal horn of spinal cord.

  • PDF

Long-Duration Three-Dimensional Spheroid Culture Promotes Angiogenic Activities of Adipose-Derived Mesenchymal Stem Cells

  • Lee, Jun Hee;Han, Yong-Seok;Lee, Sang Hun
    • Biomolecules & Therapeutics
    • /
    • 제24권3호
    • /
    • pp.260-267
    • /
    • 2016
  • Mesenchymal stem cells (MSCs) offer significant therapeutic promise for various regenerative therapies. However, MSC-based therapy for injury exhibits low efficacy due to the pathological environment in target tissues and the differences between in vitro and in vivo conditions. To address this issue, we developed adipose-derived MSC spheroids as a novel delivery method to preserve the stem cell microenvironment. MSC spheroids were generated by suspension culture for 3 days, and their sizes increased in a time-dependent manner. After re-attachment of MSC spheroids to the plastic dish, their adhesion capacity and morphology were not altered. MSC spheroids showed enhanced production of hypoxia-induced angiogenic cytokines such as vascular endothelial growth factor (VEGF), stromal cell derived factor (SDF), and hepatocyte growth factor (HGF). In addition, spheroid culture promoted the preservation of extracellular matrix (ECM) components, such as laminin and fibronectin, in a culture time- and spheroid size-dependent manner. Furthermore, phosphorylation of AKT, a cell survival signal, was significantly higher and the expression of pro-apoptotic molecules, poly (ADP ribose) polymerase-1 (PARP-1) and cleaved caspase-3, was markedly lower in the spheroids than in MSCs in monolayers. In the murine hindlimb ischemia model, transplanted MSC spheroids showed better proliferation than MSCs in monolayer. These findings suggest that MSC spheroids promote MSC bioactivities via secretion of angiogenic cytokines, preservation of ECM components, and regulation of apoptotic signals. Therefore, MSC spheroid-based cell therapy may serve as a simple and effective strategy for regenerative medicine.

대황(大黃)이 흰쥐의 위점막 손상에 미치는 영향 (Effects of Rhei Rhizoma on Gastric Ulcer in Sprague-Dawley Rats)

  • 김범회
    • 동의생리병리학회지
    • /
    • 제25권1호
    • /
    • pp.71-77
    • /
    • 2011
  • Gastric ulcer has multifactorial etiology, and the development of ulcer is known to be caused by gastric acidity, pepsin secretion, gastric motility and gastric mucosal blood flow. The ulcer results from the tissue necrosis and apoptotic cell death triggered by mucosal ischemia, free radical formation and cessation of nutrient delivery. The gastric mucosa is usually exposed to a wide range of aggressive insults, and has developed efficient mechanisms to repair tissue injury. The apoptotic process of gastric mucosa is triggered by the induction of such proapoptotic gene expression, such as BAX. The Bcl-2 family of proteins plays a pivotal role in the regulation of apoptosis. The maintenance of gastric mucosa integrity depends upon the ratio between cell proliferation and cell death. Stress-inducing factors may affect Bcl-2/BAX ratio and thus the rate of apoptosis through modulation of the expression of both proteins depends upon the experimental model. In addition to the regulation of apoptosis, new vessels have to be generated in order to ensure an adequate supply of oxygen and nutrients to the healing gastric mucosa. This events are regulated by several factors. Among them, such polypeptide growth factors, such as vascular endothelial growth factor (VEGF) regulates essential cell functions involved in tissue healing including cell proliferation and differentiation. The purpose of this study was carried to investigate whether Rhei Rhizoma administration might protect apoptotic cell death and promote angiogenesis in gastric mucosa. Sprague-Dawley rats were randomly divided into 4 groups; normal, saline, cimetidine and Rhei Rhizoma-treated group. The saline, cimetidine and Rhei Rhizoma extracts were orally administrated to each group and gastric ulcer was induced by HCl-EtOH solution. After 1 hour, the stomachs were collected for histological observation and immunohistochemistry. In results, Rhei Rhizoma proves to promote to heal wound in gastric ulcer in conclusion and the significant changes of BAX, Bcl-2 and VEGF quantity in gastric mucosa were observed. These results suggest that Rhei Rhizoma extract may promote incision wound healing and has protective effects on gastric ulcer in rats.

Cyclosporine과 Mitomycin의 일측성 신관류로 초래되는 백서 신병변에 관한 연구 (Effect of Unilateral Renal Perfusion of Cyclosporine and Mitomycin on Rat's Kidney)

  • 백승인;임현석;신원혜;고철우;구자훈;곽정식
    • Childhood Kidney Diseases
    • /
    • 제2권2호
    • /
    • pp.138-144
    • /
    • 1998
  • 목 적 : 면역억제제로 사용되는 cyclosporine과 항암제로 사용되는 mitomycin의 신장에 미치는 직접적인 독성여부를 확인하고 이들 약제의 사용으로 초래되는 신장병변의 발생기전을 알아보고자 본 연구를 시행하였다. 대상 및 방법 : 실험동물은 체중 250-300gm의 Sprague-Dawley계 흰쥐를 암수 구별없이 사용하였으며 약물 투여는 Hoyer등이 기술한 방법을 다소 변형한 일측성 신관류 방법을 사용하여 좌측 신장을 대동맥과 대정맥의 혈류로부터 차단하고 좌측 신동맥을 통하여 좌측신을 관류시켰다. Cyclosporine은 4 mL에 2.5 mg, mitomycin은 4 mL에 1.6mg의 농도로 하였고 대조군은 생리적 식염수를 .사용하였으며 혈관 clamping으로부터 감자제거까지 소요된 총 ischemic time은 15분을 초과하지 않았다. 약제 투여후 48시간에 실험 동물을 도살하고 좌측 신장을 적출하여 광학 및 전자 현미경 검사를 시행하였다. 결 과 : Cyclosporine투여군에서는 사구체 내피세포 및 상피세포의 심한 종창이 있었으며 간질내 모세혈관의 내피세포도 심한 종창을 보였다. Mitomycin투여군에서는 사구체 내피세포 및 상피세포의 심한 종창을 보였으며 일부의 모세 혈관에는 혈소판의 응집, 종창 및 탈과립 현상과 섬유소 물질도 포함된 혈전성 미세혈관 병변의 소견을 보였다. 결 론 : Cyclosporine과 mitomycin은 신장 내피세포에 직접적인 손상을 초래하며 그러므로 이들 약제 사용으로 인한 혈전성 미세혈관 병변 (용혈성 요독증)의 발생 기전에는 이들 약제의 신장 내피세포에의 직접적인 손상이 중요한 시발점이 되는 것으로 생각된다.($41.4\%$)이 신초음파에서 이상소견을 보였다. 방광요관역류가 있었던 32명(53역류신장)은 역류정도에따라 Grade $I:25.0\%,\;II:44.5\%,\;III:64.3\%,;IV:92.9\%,\;V:100\%$에서 초기 DMSA 신주사상 이상소견을 보였다. 53역류신장중 전체적으로 DMSA신주사에서 36신장($68.0\%$), 신초음파에서 26신장($49.1\%$)이 이상소견을 보여 유의한 차이를 보였으며(P<0.05). 특히 Grade IV 역류신장에서 유의한 차이가 있었다(P<0.05). 결 론 : DMSA신주사를 이용한 급성신우신염의 진단은 신초음파검사 보다 유용하며, 초기 DMSA신주사 소견상 이상소견을 보인 경우 약 8-12주 후 추적검사를 시행하여 변화를 관찰하고 섭취결손 부분이 남아있는 경우에는 향후 새로운 병소의 출현 혹은 정상화 여부를 보기 위한 추적검사가 필요하리라 사료된다. 방광요관역류 환아에서 DMSA신주사소견은 방광요관역류의 정도가 심할수록 이상소견을 보일 확률이 높으며 신초음파 검사보다 민감도가 높은 것을 알 수 있었다.이는 혈압을 조절시키지 못하였고 저단백식이 항고혈압제투여군은 저단백식이 단독투여군보다 혈압조절 및 단백뇨의 감소 소견은 유의한 차이를 보였으나, mesangial matrix expansion score,대상성 사구체비대는 통계적으로 유의한 차이를 보이지 않았다. 그러므로 만성신부전의 진행을 지연시키는데 있어서 저단백식이와 함께 항고혈압제를 추가하였을 때 항고혈압제에 의한 추가적인 지연 효과는 관찰되지 않았다.학생이 남학생보다 높고, 물리치료과를 타의로

  • PDF

Eupatilin Inhibits Gastric Cancer Cell Growth by Blocking STAT3-Mediated VEGF Expression

  • Cheong, Jae-Ho;Hong, Sung-Yi;Zheng, Yanjun;Noh, Sung-Hoon
    • Journal of Gastric Cancer
    • /
    • 제11권1호
    • /
    • pp.16-22
    • /
    • 2011
  • Purpose: Eupatilin is an antioxidative flavone and a phytopharmaceutical derived from Artemisia asiatica. It has been reported to possess anti-tumor activity in some types of cancer including gastric cancer. Eupatilin may modulate the angiogenesis pathway which is part of anti-inflammatory effect demonstrated in gastric mucosal injury models. Here we investigated the anti-tumor effects of eupatilin on gastric cancer cells and elucidated the potential underlying mechanism whereby eupatilin suppresses angiogenesis and tumor growth. Materials and Methods: The impact of eupatilin on the expression of angiogenesis pathway proteins was assessed using western blots in MKN45 cells. Using a chromatin immunoprecipitation assay, we tested whether eupatilin affects the recruitment of signal transducer and activator of transcription 3 (STAT3), aryl hydrocarbon receptor nuclear translocator (ARNT) and hypoxia-inducible factor-$1{\alpha}$ (HIF-$1{\alpha}$) to the human VEGF promoter. To investigate the effect of eupatilin on vasculogenesis, tube formation assays were conducted using human umbilical vein endothelial cells (HUVECs). The effect of eupatilin on tumor suppression in mouse xenografts was assessed. Results: Eupatilin significantly reduced VEGF, ARNT and STAT3 expression prominently under hypoxic conditions. The recruitment of STAT3, ARNT and HIF-$1{\alpha}$ to the VEGF promoter was inhibited by eupatilin treatment. HUVECs produced much foreshortened and severely broken tubes with eupatilin treatment. In addition, eupatilin effectively reduced tumor growth in a mouse xenograft model. Conclusions: Our results indicate that eupatilin inhibits angiogenesis in gastric cancer cells by blocking STAT3 and VEGF expression, suggesting its therapeutic potential in the treatment of gastric cancer.

관류, 보존 및 재관류 과정이 이식된 개의 폐조직에 미치는 영향 (Effects of Flushing, Preservation and Reperfusion in the Canine Transplanted Lung Tissue)

  • 임영근;박창권;권건영
    • Tuberculosis and Respiratory Diseases
    • /
    • 제46권4호
    • /
    • pp.512-522
    • /
    • 1999
  • 연구배경: 공여폐에 관류 후 보존 과정에서 야기될 수 있는 형태학적 변화와 재관류를 시행한 후 초래될 수 있는 폐조직의 변화를 광학 및 전자현미경으로 검색하여 폐이식 전후 과정에서 초래될 수 있는 폐 손상의 형태화적 변화를 관찰하고자 본 연구를 실시하였다. 방 법: 실험 재료로는 한국산 성견 46마리를 사용하여 공여견과 수용견으로 나눈다음 공여견에서 폐관류, 폐보존 및 재관류 과정 후 폐조직을 각각 채취하여 형태학적 검색을 하였다. 결 과: 광학현미경 소견에서 폐관류에 의한 조직손상은 매우 경미하였다. 전자현미경 소견에서 폐포 모세혈관은 불규칙하고, 혈관 내피세포에 종창은 뚜렷하지 않았다. 폐보존 후에는 광학현미경 소견에서 폐포허탈과 경화가 폐관류 군에 비하여 더욱 뚜렷하게 보였고 부분적으로 폐간질 부위가 비후 되었다. 전자현미경 소견에서 폐포 허탈이 뚜렷하면서 I 형 폐포상피세포의 종창 및 파괴와 파괴산물이 폐포내로 유리되었고, 대식세포의 탐식이 현저하였다. 폐포 모세혈관 내피세포는 종창, 수포형성 및 혈관 내로 촉각모양 돌기를 관찰할 수 있었다. 재관류후 광학현미경 관찰에서 폐실질의 허탈과 경화가 뚜렷하여 저배율에서 쉽게 볼 수 있었고 폐포 구조의 심한 변형과 폐간질 조직의 비후가 현저하였다. 전자현미경 소견에서 I 형 폐포상피세포는 종창, 수포형성 및 파괴를 보였고 폐포 내로 파괴산물이 자주 보였다. II 형 상피세포의 세포질 내에는 다층판체의 수가 감소하고 내용물은 비어 있었다. 폐포모세혈관들은 그 형태가 매우 불규칙하였으며 내피세포에서 다수의 수포형성과 종창을 보였고, 혈관 내에는 파괴산물과 촉각모양 돌기가 뚜렷하게 보였다. 폐간질 부위는 종창으로 미만성 비후를 보였다. LPDG용액에 VP와 PGE1을 함께 사용한 군에서는 폐조직의 변화가 정미하였으나 MEC 용액에 VP와 PGE1을 사용한 군에서는 폐포 상피세포와 폐포 모세혈관 내피세포의 변화가 보다 현저하였다. 결 론: 이상의 실험 결과를 토대로 관류에 의한 폐조직 변화는 경미하였고, 보존 후에는 관류군에 비해서 폐조직 손상이 더욱 뚜렷하였다. 채관류 후에는 관류 및 보존 과정보다 훨씬 심한 형태학적 변화를 보였는데 이들 변화는 급성 폐손상의 초기 병변에 해당되었다. 따라서 공여폐에 사용할 적절한 보존액 개발과 함께 보존 및 재관류과정에서 초래되는 조직 손상을 최소화하는 기술 개발이 폐이식의 성공률을 높이는 데 중요한 요소가 될 것으로 생각된다.

  • PDF