• Title/Summary/Keyword: Endogenous Protection

Search Result 42, Processing Time 0.03 seconds

Message in a Bottle: Chemical Biology of Induced Disease Resistance in Plants

  • Schreiber, Karl;Desveaux, Darrell
    • The Plant Pathology Journal
    • /
    • v.24 no.3
    • /
    • pp.245-268
    • /
    • 2008
  • The outcome of plant-pathogen interactions is influenced significantly by endogenous small molecules that coordinate plant defence responses. There is currently tremendous scientific and commercial interest in identifying chemicals whose exogenous application activates plant defences and affords protection from pathogen infection. In this review, we provide a survey of compounds known to induce disease resistance in plants, with particular emphasis on how each compound was originally identified, its putative or demonstrated mechanism of defence induction, and the known biological target(s) of each chemical. Larger polymeric structures and peptides/proteins are also discussed in this context. The quest for novel defence-inducing molecules would be aided by the capability for high-throughput analysis of candidate compounds, and we describe some issues associated with the development of these types of screens. Subsequent characterization of hits can be a formidable challenge, especially in terms of identifying chemical targets in plant cells. A variety of powerful molecular tools are available for this characterization, not only to provide insight into methods of plant defence activation, but also to probe fundamental biological processes. Furthermore, these investigations can reveal molecules with significant commercial potential as crop protectants, although a number of factors must be considered for this potential to be realized. By highlighting recent progress in the application of chemical biology techniques for the modulation of plant-pathogen interactions, we provide some perspective on the exciting opportunities for future progress in this field of research.

Signal transfduction pathways for infection structure formation in the rice blast fungus, Magnaporthe grisea

  • Lee, Yong-Hwan;Khang, Chang-Hyun
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1999.07a
    • /
    • pp.41-44
    • /
    • 1999
  • Magnaporthe grisea (Hebert) Barr (anamorph: Pyricularia grisea) is a typical heterothallic Ascomycete and the causal agent of rice blast, one of the most destructive diseases on rice (Oryza sativa L.) worldwide. The interactions between cells of the pathogen and those of the host involve a complex of biological influences which can lead to blast disease. The early stages of infection process in particular may be viewed as a sequence of discrete and critical events. These include conidial attachment, gemination, and the formation of an appressorium, a dome-shaped and melanized infection structure. Disruption of this process at any point will result in failure of the pathogen to colonize host tissues. This may offer a new avenue for developing innovative crop protection strategies. To recognize and capture such opportunities, understanding the very bases of the pathogenesis at the cellular and molecular level is prerequisite. Much has been learned about environmental cues and endogenous signaling systems for the early infection-related morphogenesis in M. grisea during last several years. The study of signal transduction system in phytopathogenic filamentous fungi offers distinct advantages over traditional mammalian systems. Mammalian systems often contain multiple copies of important genes active in the same tissue under the same physiological processes. Functional redundancy, alternate gene splicing, and specilized isoforms make defining the role of any single gene difficult. Fungi and animals are closely related kingdoms [3], so inferences between these organisms are often justified. For many genes, fungi frequently possess only a single copy, thus phenotype can be attributed directly to the mutation or deletion of any particular gene of interest.

  • PDF

북한산 국립공원의 식물상

  • 이영노
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1985.08b
    • /
    • pp.19-22
    • /
    • 1985
  • Magnaporthe grisea (Hebert) Barr (anamorph: Pyricularia grisea) is a typical heterothallic Ascomycete and the causal agent of rice blast, one of the most destructive diseases on rice (Oryza sativa L.) worldwide. The interactions between cells of the pathogen and those of the host involve a complex of biological influences which can lead to blast disease. The early stages of infection process in particular may be viewed as a sequence of discrete and critical events. These include conidial attachment, gemination, and the formation of an appressorium, a dome-shaped and melanized infection structure. Disruption of this process at any point will result in failure of the pathogen to colonize host tissues. This may offer a new avenue for developing innovative crop protection strategies. To recognize and capture such opportunities, understanding the very bases of the pathogenesis at the cellular and molecular level is prerequisite. Much has been learned about environmental cues and endogenous signaling systems for the early infection-related morphogenesis in M. grisea during last several years. The study of signal transduction system in phytopathogenic filamentous fungi offers distinct advantages over traditional mammalian systems. Mammalian systems often contain multiple copies of important genes active in the same tissue under the same physiological processes. Functional redundancy, alternate gene splicing, and specilized isoforms make defining the role of any single gene difficult. Fungi and animals are closely related kingdoms [3], so inferences between these organisms are often justified. For many genes, fungi frequently possess only a single copy, thus phenotype can be attributed directly to the mutation or deletion of any particular gene of interest.

  • PDF

Ganoderma lucidum Pharmacopuncture for the Treatment of Acute Gastric Ulcers in Rats

  • Park, Jae-Heung;Jang, Kyung-Jun;Kim, Cheol-Hong;Lee, Yoo-Hwan;Lee, Soo-Jung;Kim, Bum-Hoi;Yoon, Hyun-Min
    • Journal of Pharmacopuncture
    • /
    • v.17 no.3
    • /
    • pp.40-49
    • /
    • 2014
  • Objectives: The gastric ulcer is a common disorder of the stomach and duodenum. The basic physiopathology of a gastric ulcer results from an imbalance between some endogenous aggressive and cytoprotective factors. This study examined whether Ganoderma lucidum pharmacopuncture (GLP) would provide protection against acute gastric ulcers in rats. Methods: Sprague-Dawley rats were divided randomly into 4 groups of 8 rats each: normal, control, normal saline (NP) and GLP groups. The experimental acute gastric ulcer was induced by using an EtOH/HCl solution and the normal group received the same amount of normal saline instead of ethanol. The NP and the GLP groups were treated once with injections of saline and GLP, respectively. Two local acupoints were used: CV12 (中脘) which is the alarm point of the Stomach Meridian, and ST36 (足三里), which is the sea point of the Stomach Meridian. The stomachs from the rats in each group were collected and analyzed for gross appearance and histology. Also, immunohistochemistry staining for BAX, Bcl-2 and TGF-${\beta}1$ was performed. Results: Histological observations of the gastric lesions in the control group showed comparatively extensive damage of the gastric mucosa and necrotic lesions had penetrated deeply into the mucosa. The lesions were long, hemorrhagic, and confined to the glandular portions. The lesions were measured microscopically by using the clear depth of penetration into the gastric mucosal surface. The length and the width of the ulcer were measured and the inhibition percentage was calculated. Wound healing of the acute gastric ulcer was promoted by using GLP, and significant alterations of indices in gastric mucosa were observed. Such protection was shown by gross appearance, histology and immunohistochemistry staining for BAX, Bcl-2 and TGF-${\beta}1$. Conclusion: These results suggest that GLP administered at CV12 and ST36 can provide significant protection to the gastric mucosa against an ethanol-induced acute gastric ulcer.

Radioprotective effect of fucoidan against hematopoietic and small intestinal stem cells of γ-ray irradiated mice (감마선을 조사한 마우스의 조혈 및 소장줄기세포에 대한 fucoidan의 방호효과)

  • Park, Eunjin;Jeon, Seong Mo;Joo, Hong-Gu;Hwang, Kyu-Kye;Jee, Youngheun
    • Korean Journal of Veterinary Research
    • /
    • v.48 no.4
    • /
    • pp.393-399
    • /
    • 2008
  • We investigated the potential of fucoidan for its ability to provide protection from gamma rayinduced damage. In our results, the fucoidan significantly improved the counts of endogenous colony forming unit to $9.5 {\pm} 1.5$, from $5.5 {\pm} 2.5$ compared with un-treated irradiated control group at 10 day after 7 Gy whole body irradiation. After 2 Gy irradiation, fucoidan treatment attenuated the percent of tail DNA of splenocytes, parameters of DNA damage, from $30.17 {\pm} 1.7%$ to $13.67 {\pm} 2.81%$ 2.81% by comet assay and also accelerated the proliferation of splenocytes, compared with un-treated irradiated control group by 3Hthymidine incorporation assay. Furthermore, fucoidan decreased the number of apoptotic fragments per intestinal crypt by 31.8% at 1 days after 2 Gy irradiation. These results indicated that the fucoidan significantly improved the hematopoietic recovery, prevented the DNA damage in immune cells and enhanced their proliferation, which had been suppressed by ionizing radiation. in addition, fucoidan rescued intestinal cells from radiation-induced apoptosis. Thus, this study raises the possibility of using fucoidan as adjuvant therapeutic agent after radiotherapy.

Transcriptional Regulation of the AP-1 and Nrf2 Target Gene Sulfiredoxin

  • Soriano, Francesc X.;Baxter, Paul;Murray, Lyndsay M.;Sporn, Michael B.;Gillingwater, Thomas H.;Hardingham, Giles E.
    • Molecules and Cells
    • /
    • v.27 no.3
    • /
    • pp.279-282
    • /
    • 2009
  • "Two-cysteine" peroxiredoxins are antioxidant enzymes that exert a cytoprotective effect in many models of oxidative stress. However, under highly oxidizing conditions they can be inactivated through hyperoxidation of their peroxidatic active site cysteine residue. Sulfiredoxin can reverse this hyperoxidation, thus reactivating peroxiredoxins. Here we review recent investigations that have shed further light on sulfiredoxin's role and regulation. Studies have revealed sulfiredoxin to be a dynamically regulated gene whose transcription is induced by a variety of signals and stimuli. Sulfiredoxin expression is regulated by the transcription factor AP-1, which mediates its up-regulation by synaptic activity in neurons, resulting in protection against oxidative stress. Furthermore, sulfiredoxin has been identified as a new member of the family of genes regulated by Nuclear factor erythroid 2-related factor (Nrf2) via a conserved cis-acting antioxidant response element (ARE). As such, sulfiredoxin is likely to contribute to the net antioxidative effect of small molecule activators of Nrf2. As discussed here, the proximal AP-1 site of the sulfiredoxin promoter is embedded within the ARE, as is common with Nrf2 target genes. Other recent studies have shown that sulfiredoxin induction via Nrf2 may form an important part of the protective response to oxidative stress in the lung, preventing peroxiredoxin hyperoxidation and, in certain cases, subsequent degradation. We illustrate here that sulfiredoxin can be rapidly induced in vivo by administration of CDDO-TFEA, a synthetic triterpenoid inducer of endogenous Nrf2, which may offer a way of reversing peroxiredoxin hyperoxidation in vivo following chronic or acute oxidative stress.

Identification of Soluble Epoxide Hydrolase Inhibitors from the Seeds of Passiflora edulis Cultivated in Vietnam

  • Cuong, To Dao;Anh, Hoang Thi Ngoc;Huong, Tran Thu;Khanh, Pham Ngoc;Ha, Vu Thi;Hung, Tran Manh;Kim, Young Ho;Cuong, Nguyen Manh
    • Natural Product Sciences
    • /
    • v.25 no.4
    • /
    • pp.348-353
    • /
    • 2019
  • Soluble epoxide hydrolases (sEH) are enzymes present in all living organisms, metabolize epoxy fatty acids to 1,2-diols. sEH in the metabolism of polyunsaturated fatty acids plays a key role in inflammation. In addition, the endogenous lipid mediators in cardiovascular disease are also broken down to diols by the action of sEH that enhanced cardiovascular protection. In this study, sEH inhibitory guided fractionation led to the isolation of five phenolic compounds trans-resveratrol (1), trans-piceatannol (2), sulfuretin (3), (+)-balanophonin (4), and cassigarol E (5) from the ethanol extract of the seeds of Passiflora edulis Sims cultivated in Vietnam. The chemical structures of isolated compounds were determined by the interpretation of NMR spectral data, mass spectra, and comparison with data from the literature. The soluble epoxide hydrolase (sEH) inhibitory activity of isolated compounds was evaluated. Among them, trans-piceatannol (2) showed the most potent inhibitory activity on sEH with an IC50 value of 3.4 μM. This study marks the first time that sulfuretin (3) was isolated from Passiflora edulis as well as (+)-balanophonin (4), and cassigarol E (5) were isolated from Passiflora genus.

The inhibition of Hypertension-related Response by $17\beta$-estradiol and the Increase of $17\beta$-estradiol Activity by Electrical Stimulation ($17\beta$-estradiol의 고혈압 유도반응 억제와 인체적용 전기자극의 $17\beta$-estradiol 활성 증가)

  • Kim, Jung-Hwan
    • The Journal of Korean Physical Therapy
    • /
    • v.21 no.2
    • /
    • pp.109-116
    • /
    • 2009
  • Purpose: $17\beta$-estradiol is the most active endogenous estrogen, which is related to favorable changes in the plasma lipid profile, to relaxation of the coronary vessels, and to a decrease in platelet aggregation and vascular smooth muscle cell migration. However, although the beneficial effect of estrogens on plasma lipoproteins (ie, lowering low-density lipoprotein and increasing high-density lipoprotein cholesterol) contributes to cardiovascular protection, it does not fully account for the protective effect, particularly in the application of physical therapy, including low frequency electrical stimulation. Methods: The aim of this study was to demonstrate the inhibition of stressors, such as endothelin-1 (ET-1), serotonin (5-hydroxytryptamine, 5-HT), prostaglandin $F2\alpha$ ($PGF2\alpha$), and a protein kinase C (PKC) activator 12-deoxyphorbol 13-isobutyrate (DPB), induced isometric tension by $17\beta$-estradiol in vascular smooth muscle strips, respectively. In addition, the effects of low frequency electrical stimulation at the meridian points (CV-3, -4, Ki-12, SP-6, LR-3, BL-25, -28, -32, -52) on the indirect antihypertensive effect were examined by monitoring the changes in the serum $17\beta$-estradiol concentration in healthy volunteers. Results: Isometric tension analysis showed that the responses of inhibited tension by $17\beta$-estradiol were similar to the same stressors in rat aortic smooth muscle strips. Furthermore, although the continued amplitude modulation (AM) type of electrical stimulation was not increased significantly by electrical stimulation, the current of the frequency modulation (FM) type of low frequency electrical stimulation increased the serum $17\beta$-estradiol concentration in normal volunteers. Conclusion: These results, in part, suggest that $17\beta$-estradiol has the capacity to supress stressor-induced muscle tension, and electrical stimulation, particularly current of the FM type, has a modulatory effect on the sex steroid hormones, particularly $17\beta$-estradiol, in healthy volunteers.

  • PDF

Development of the Integrative System to Categorize Damaged Areas for Participatory Restoration by Local Residents (주민참여형 복원을 위한 훼손지의 통합적 유형 구분 체계 개발)

  • Ahn, Tong Mahn;Kim, In Ho;Choi, Hyung Suk;Lee, Jae Young;Lee, Ji Young;Lee, Young;Ryu, Sun Jung;Min, So Young;Yoon, Min Ho
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.11 no.2
    • /
    • pp.87-103
    • /
    • 2008
  • Despite its high level of symbolic and ecological values, BaigDooDaeGahn, about 684km long stretch of mountains in the eastern part of Korean peninsular, has been widely destroyed and barely recovered. While Korean government enacted a special law in 2005 to protect these areas and designated about 2,658 $km^2$ as the protection zone in 2007, there were a number of sites inside that had been disturbed by mining, illegal crop cultivations, stone quarry, development of resort facilities, construction of roads, and other human activities. To restore these damaged areas in a sustainable manner, the integrative system to categorize damaged areas for participatory restoration by local residents was suggested by this study. The most distinguished feature of the proposed system was to integrate the existing restoration approach focusing on biophysical conditions into the sustainability-building approach to reactivate socio-economic conditions of local society, called 'restoration of eco-cultural community'. As an entry stage to design the new restoration system including processes and procedures, the damaged areas had to be re-categorized by two characteristics, their physical conditions in terms of possibility of public participatory restoration and the readiness of local society required for pursuing endogenous development. More detailed considerations regarding these two characteristics and three different categories has been suggested and discussed.

A Two-Strain Mixture of Rhizobacteria Elicits Induction of Systemic Resistance Against Pseudomonas syringae and Cucumber Mosaic Virus Coupled to Promotion of Plant Growth on Arabidopsis thaliana

  • Ryu Choong-Min;Murphy John F.;Reddy M.S.;Kloepper Joseph W.
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.2
    • /
    • pp.280-286
    • /
    • 2007
  • We evaluated a commercial biopreparation of plant growth-promoting rhizobacteria (PGPR) strains Bacillus subtilis GB03 and B. amyloliquefaciens IN937a formulated with the carrier chitosan (Bio Yield) for its capacity to elicit growth promotion and induced systemic resistance against infection by Cucumber Mosaic Virus (CMV) and Pseudomonas syringae pv. tomato DC3000 in Arabidopsis thaliana. The biopreparation promoted plant growth of Arabidopsis hormonal mutants, which included auxin, gibberellic acid, ethylene, jasmonate, salicylic acid, and brassinosteroid insensitive lines as well as each wild-type. The biopreparation protected plants against CMV based on disease severity in wild-type plants. However, virus titre was not lower in control plants and those treated with biopreparation, suggesting that the biopreparation induced tolerance rather than resistance against CMV. Interestingly, the biopreparation induced resistance against CMV in NahG plants, as evidenced by both reduced disease severity and virus titer. The biopreparation also elicited induced resistance against P. syringae pv. tomato in the wild-type but not in NahG transgenic plants, which degrade endogenous salicylic acid, indicating the involvement of salicylic acid signaling. Our results indicate that some PGPR strains can elicit plant growth promotion by mechanisms that are different from known hormonal signaling pathways. In addition, the mechanism for elicitation of induced resistance by PGPR may be pathogen-dependent. Collectively, the two-Bacilli strain mixture can be utilized as a biological inoculant for both protection of plant against bacterial and viral pathogens and enhancement of plant growth.