

Identification of Soluble Epoxide Hydrolase Inhibitors from the Seeds of *Passiflora edulis* Cultivated in Vietnam

To Dao Cuong^{1,2,3,*}, Hoang Thi Ngoc Anh¹, Tran Thu Huong¹, Pham Ngoc Khanh¹, Vu Thi Ha¹, Tran Manh Hung⁵, Young Ho Kim⁶, and Nguyen Manh Cuong^{1,4,*}

¹Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST),

²Faculty of Pharmacy, Phenikaa University, Yen Nghia, Ha Dong, Hanoi 12116, Vietnam

³Phenikaa Research and Technology Institute (PRATI), A&A Green Phoenix Group JSC,

No.167 Hoang Ngan, Trung Hoa, Cau Giay, Hanoi 11313, Vietnam

⁴Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, 100803, Vietnam

⁵Department of Biomedical Sciences, Institute for Research and Executive Education (VNUK), The University of Danang,

158A Le Loi Street, Hai Chau district, Da Nang 551000, Vietnam

⁶College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea

Abstract – Soluble epoxide hydrolases (sEH) are enzymes present in all living organisms, metabolize epoxy fatty acids to 1,2-diols. sEH in the metabolism of polyunsaturated fatty acids plays a key role in inflammation. In addition, the endogenous lipid mediators in cardiovascular disease are also broken down to diols by the action of sEH that enhanced cardiovascular protection. In this study, sEH inhibitory guided fractionation led to the isolation of five phenolic compounds *trans*-resveratrol (1), *trans*-piceatannol (2), sulfuretin (3), (+)-balanophonin (4), and cassigarol E (5) from the ethanol extract of the seeds of *Passiflora edulis* Sims cultivated in Vietnam. The chemical structures of isolated compounds were determined by the interpretation of NMR spectral data, mass spectra, and comparison with data from the literature. The soluble epoxide hydrolase (sEH) inhibitory activity of isolated compounds was evaluated. Among them, *trans*-piceatannol (2) showed the most potent inhibitory activity on sEH with an IC₅₀ value of 3.4 μ M. This study marks the first time that sulfuretin (3) was isolated from *Passiflora edulis* as well as (+)-balanophonin (4), and cassigarol E (5) were isolated from *Passiflora edulis* as well as (+)-balanophonin (4).

Keywords - Passiflora edulis, Passifloraceae, Phenolic, Stilbene, sEH

Introduction

Soluble epoxide hydrolase (sEH, EC 3.3.2.10) is the major enzyme responsible for the hydrolysis of epoxy fatty acids (EpFAs) to their corresponding vicinal diols in humans and other mammals.¹ These EpFAs include the epoxides of linoleic, arachidonic, eicosapentaenoic, and docosahexaenoic acid that are produced primarily by cytochrome P450s. These natural molecules are pleiotropic endogenous mediators with key functions in inflamma-

tion,¹ pain,² and blood pressure regulation.³ Increasing the levels of endogenous EpFAs by inhibiting sEH has been shown to block and resolve inflammation,⁴ reduce pain,² lower blood pressure, and prevent cardiovascular diseases.⁵ To overcome these problems, finding new inhibitors from natural plants has been investigated. A few sEH inhibitors from natural products have been identified. The results showed that natural compounds found to inhibit sEH were diverse including biflavonoids,⁶ selaginellin,⁷ stilbenes,⁸ anthraquinone derivatives,⁹ carbazole-type alkaloids (isomahanine, bisisomahanine),¹⁰ alkylphloroglucinol derivatives, and triterpenoids.¹¹ These results encourage us to continue our studies in discovery of sEH inhibitors from natural sources.

From our screening results, we found that the ethanol extract of *Passiflora edulis* Sims had appreciable inhibitory activity. *Passiflora edulis* Sims (Passifloraceae), a

¹⁸ Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam

^{*}Author for correspondence

To Dao Cuong, Faculty of Pharmacy, Phenikaa University, Yen Nghia, Ha Dong, Hanoi 12116, Vietnam.

Tel: +84-971-886-989; E-mail: cuong.todao@phenikaa-uni.edu.vn

Nguyen Manh Cuong, Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam.

Tel: +84-24-3791-1812; E-mail: nmcuong_inpc@yahoo.com.vn

popular tropical fruit throughout the world, is usually used for juice production,¹² and widely cultivated in South America, Africa, and Asia. In Vietnam, P. edulis is popularly cultivated in Tay Nguyen, Nghe An and Son La with areas of over ten thousand hectares. P. edulis was found to possess biological activities including antiinflammatory,¹³ antihypertensive,¹⁴ anti-oxidant,¹⁵ anti-tumor,¹⁶ anti-anxiety,¹⁷ antifungal,¹⁸ and found to inhibit melanogenesis and promote collagen synthesis.¹⁹ Previous studies on chemical constituents of P. edulis showed the presence of triterpenoids,²⁰ flavonoids,²¹ alkaloids,²² carotenoids,²³ stilbenoids,^{19,24} oil, and tocopherols.²⁵ In spite of the number of studies that have been performed, 19,24,25 there has been no investigation of chemical constituents and sEH inhibitory activity of P. edulis seeds cultivated in Vietnam. Therefore, this paper described the isolation and structural elucidation of these compounds as well as the evaluation of their inhibitory activity on sEH.

Experimental

General experimental procedures – ¹H-NMR (500 MHz) and ¹³C-NMR (125 MHz) were measured on a Bruker Avance 500 MHz spectrometer. ESI-MS was obtained from a Varian FT-MS spectrometer and MicroQ-TOF III (Bruker Daltonics, Ettlingen Germany). Optical rotations were measured on P-2000 polarimeter (JASCO, Tokyo, Japan). Column chromatography was carried out on silica gel (Si 60 F₂₅₄, 40-63 mesh, Merck, St. Louis, MO, USA). All solvents were redistilled before use. Precoated TLC plates (Si 60 F₂₅₄) were used for analytical purposes. Compounds were visualized under UV radiation (254, 365 nm) and by spraying plates with 10% H₂SO₄ followed by heating with a heat gun.

Plant materials – The seeds of *Passiflora edulis* Sims were provided by Nafoods Group JSC (Nghe An Province, Vietnam) in 2016 and identified by botanist Dr. Nguyen Quoc Binh, Vietnam National Museum of Nature, VAST, Hanoi, Vietnam. A voucher specimen (C-573) was deposited in the Herbarium of the Institute of Natural Products Chemistry, VAST, Vietnam.

Extraction and isolation – The dried powdered seeds (1.0 kg) of *P. edulis* were extracted three times with *n*-hexane $(3 \times 4.0 \text{ L})$ at room temperature for 3 days, filtered, and then concentrated under decreased pressure to give *n*-hexane extract (200 g) and residue. The dried residue (700 g) was then extracted three times with ethanol $(3 \times 3.0 \text{ L})$ by sonication for 6 hours. The ethanol extract (60 g) was suspended in hot-water (0.3 L) and partitioned with dichloromethane (CH₂Cl₂, $3 \times 3.0 \text{ L}$) and

ethyl acetate (EtOAc, 3×3.0 L) successively. The resulting fraction was concentrated under decreased pressure to give CH₂Cl₂ (5.2 g) and EtOAc (20 g) fractions, respectively. By the guided-fractionation activity, the EtOAc soluble fraction was chromatographed on a silica gel column chromatography (CC) eluting with a gradient of CHCl₃-MeOH (20:1 to 0:1) to afford eight fractions (Fr. E1 to Fr. E8). Fraction E3 (820 mg) was subjected on a silica gel CC eluting with a gradient of *n*-hexane-acetone (4:1 to 0:1) to afford compounds 1 (6.2 mg) and 2 (200 mg). Fraction E4 (3.5 g) was also subjected to silica gel CC eluting with a gradient of CHCl₃-acetone (4:1 to 0:1) to afford six sub-fractions (E4.1 to E4.6). Compounds 3 (15.8 mg) and 4 (16.2 mg) were obtained from sub-fraction E4.3 (250 mg) by using C18-RP silica gel CC and eluting with a gradient of MeOH-H₂O (1:2 to 2:1). Fraction E5 (6.5 g) was also subjected to silica gel CC eluting with a gradient of CHCl₃-MeOH (5:1 to 0:1) to afford eight subfractions (E5.1 to E5.8). The sub-fraction E5.6 (320 mg) was further subjected to C18-RP silica gel CC, eluted with a gradient of MeOH-H₂O (1:3 to 1:1) to afford compound **5** (10.2 mg).

Trans-resveratrol (1) – Ivory amorphous powder; ¹H-NMR (500 MHz, Methanol- d_4) $\delta_{\rm H}$ (ppm): 6.47 (2H, d, J = 2.0 Hz, H-2/H-6), 6.18 (1H, t, J = 2.0 Hz, H-4), 7.36 (2H, d, J = 8.5 Hz, H-2/H-6'), 6.78 (2H, d, J = 8.5 Hz, H-3'/H-5'), 6.97 (1H, d, J = 16.0 Hz, H-8), 6.81 (1H, d, J = 16.0 Hz, H-7); ¹³C-NMR (125 MHz, Methanol- d_4) $\delta_{\rm C}$ (ppm): 159.6 (C-3/C-5), 158.3 (C-4), 141.3 (C-1), 130.4 (C-1'), 129.3 (C-8), 128.7 (C-2'/C-6'), 127.0 (C-7), 116.4 (C-3'/C-5'), 105.7 (C-2/C-6), 102.6 (C-4); ESI-MS *m*/*z* 229.09 [M+H]⁺ (Calcd. for C₁₄H₁₂O₃).

Trans-piceatannol (2) – Ivory amorphous powder; ¹H-NMR (500 MHz, Acetone- d_6) $\delta_{\rm H}$ (ppm): 8.36 (2H, s, 3/5-OH), 8.16 (1H, br s, 4'-OH), 8.06 (1H, br s, 3'-OH), 7.07 (1H, d, J = 2.0 Hz, H-2'), 6.93 (1H, d, J = 16.5 Hz, H-8), 6.89 (1H, dd, J = 8.5, 2.0 Hz, H-6'), 6.82 (1H, d, J = 8.5 Hz, H-5'), 6.81 (1H, d, J = 16.5 Hz, H-7), 6.53 (2H, d, J = 2.0 Hz, H-2/6), 6.25 (1H, s, H-4); ¹³C-NMR (125 MHz, Acetone- d_6) $\delta_{\rm C}$ (ppm): 159.5 (C-3/C-5), 146.0 (C-3'/C-4'), 140.7 (C-1), 130.5 (C-1'), 129.2 (C-8), 126.8 (C-7), 119.8 (C-6'), 116.1 (C-5'), 113.7 (C-2'), 105.5 (C-2/C-6), 102.6 (C-4); ESI-MS *m*/*z* 245.08 [M+H]⁺ (Calcd. for C₁₄H₁₂O₄).

Sulfuretin (3) – Yellow amorphous solid; ¹H-NMR (500 MHz, Methanol- d_4) $\delta_{\rm H}$ (ppm): 7.63 (1H, d, J= 8.5 Hz, H-5), 7.54 (1H, d, J= 2.0 Hz, H-8), 7.26 (1H, dd, J= 8.5, 2.0 Hz, H-6), 6.86 (1H, d, J= 8.0 Hz, H-5'), 6.73 (1H, dd, J= 8.0, 2.0 Hz, H-6'), 6.72 (1H, d, J= 2.0 Hz, H-2'), 6.71 (1H, s, H-2); ¹³C-NMR (125 MHz, Methanol- d_4)

 $\delta_{\rm C}$ (ppm): 184.5 (C-4), 169.8 (C-7), 168.4 (C-9), 149.3 (C-4'), 147.7 (C-3), 146.7 (C-3'), 126.8 (C-5), 126.3 (C-6'), 125.5 (C-1'), 118.9 (C-2'), 116.7 (C-5'), 114.8 (C-10), 114.6 (C-6), 114.1 (C-2), 99.3 (C-8); ESI-MS *m/z*: 271.06 [M+H]⁺ (Calcd. for C₁₅H₁₀O₅).

(+)-Balanophonin (4) – Yellow amorphous powder; $[\alpha]_D^{25}$ +16.3° (*c* 0.05, MeOH); ¹H-NMR (500 MHz, Methanol *d*₄) $\delta_{\rm H}$: 9.60 (1H, d, *J* = 8.0 Hz, H-9'), 7.61 (1H, d, *J* = 15.5 Hz, H-7'), 7.31 (1H, s, H-6'), 7.25 (1H, s, H-2'), 6.97 (1H, s, H-2), 6.85 (1H, d, *J* = 8.0 Hz, H-5), 6.80 (1H, d, *J* = 8.0, H-6), 6.70 (1H, dd, *J* = 15.5, 8.0 Hz, H-8'), 5.63 (1H, d, *J* = 6.5 Hz, H-7), 3.92 (3H, s, 3'-OCH₃), 3.91-3.87 (2H, m, H-9), 3.84 (3H, s, 3-OCH₃), 3.59 (1H, q, *J* = 6.5 Hz, H-8); ¹³C-NMR (125 MHz, Methanol-*d*₄) $\delta_{\rm C}$ (ppm): 196.1 (C-9'), 156.8 (C-4'), 156.1 (C-3'), 152.9 (C-4), 149.2 (C-3), 146.0 (C-7'), 133.9 (C-1), 131.3 (C-5), 129.6 (C-1'), 127.1 (C-8'), 120.0 (C-6), 119.8 (C-6'), 116.2 (C-5), 114.3 (C-2'), 110.6 (C-2), 90.1 (C-7), 64.5 (C-9), 56.8 (3-OCH₃), 56.4 (3'-OCH₃), 54.6 (C-8); ESI-MS *m/z*: 357.14 [M+H]⁺ (Calcd. for C₂₀H₂₀O₆).

Cassigarol E (5) – Brown amorphous powder; $\left[\alpha\right]_{D}^{25}$ -56.4° (c 0.12, MeOH); ¹H-NMR (500 MHz, Methanol d_4) $\delta_{\rm H}$ (ppm): 7.15 (1H, d, J = 2.0 Hz, H-2), 7.09 (1H, dd, J = 8.5, 2.0 Hz, H-6), 6.99 (1H, d, J = 16.0 Hz, H-7), 6.96 (1H, d, J=8.5 Hz, H-5), 6.88 (1H, d, J=16.0 Hz, H-8), 6.68 (1H, d, J=2.0 Hz, H-2'), 6.67 (1H, d, J=8.5 Hz, H-5'), 6.50 (1H, dd, J = 8.5, 2.0 Hz, H-6'), 6.48 (2H, overlap, H-12/H-12'), 6.19 (1H, t, J = 2.0 Hz, H-14'), 6.17 (1H, t, J = 2.0 Hz, H-10'), 6.12 (2H, d, J = 2.0 Hz, H-10/H-14), 4.75 (2H, d, J=2.5 Hz, H-7'/H-8'); ¹³C-NMR (125 MHz, Methanol-d₄) $\delta_{\rm C}$ (ppm): 159.6 (C-11/C-11'), 159.2 (C-13/ C-13'), 146.6 (C-4'), 146.1 (C-3'), 145.4 (C-4), 145.0 (C-3), 141.0 (C-9), 140.1 (C-9'), 132.6 (C-1), 129.4 (C-7), 129.0 (C-1'), 128.4 (C-8), 121.0 (C-6'), 120.7 (C-6), 118.1 (C-5), 115.9 (C-2), 115.8 (C-5'), 115.6 (C-2'), 107.4 (C-10'/C-14'), 105.9 (C-10/C-14), 103.6 (C-12'), 102.9 (C-12), 82.2 (C-8'), 81.8 (C-7'); ESI-MS m/z: 487.13 [M+ H^{+} (Calcd. for $C_{28}H_{22}O_{8}$).

sEH Inhibitory Activity Assay – The sEH assay was performed as described previously.^{8,11} Briefly, 130 μ L of sEH in 25.0 mM Bis-Tris-HCl buffer (pH 7.0) and 20.0 μ L of the compounds (1 – 0.06 mM concentration) diluted in methanol, were added in 96-well plate, to which 50.0 μ L of 20.0 μ M PHOME was added in the mixture. After initiating the enzyme reaction at 37 °C, the products by hydrolysis of the substrate were monitored at excitation and emission of 330 and 465 nm for one hour.

Inhibitory activity (%) = $100 - [(C_{40} - C_0) - (S_{40} - S_0) / (C_{40} - C_0)] \times 100$

where C_{40} and S_{40} were the fluorescence of the control

Natural Product Sciences

and inhibitor, respectively, after 40 min, S_0 and C_0 is the fluorescence of inhibitor and control, respectively, at 0 min. 12-(3-adamantan-1-yl-ureido)dodecanoic acid (AUDA) was used as a positive control.

Statistical Analysis – sEH inhibitory activity assay was performed in triplicate. The results are presented as the means \pm standard error of the mean.

Result and Discussion

After removing the oil (vegetable oil) from the seeds of *P. edulis* by *n*-hexane, the residue was extracted with ethanol to obtain ethanol extract. In the search for sEH inhibitors from natural sources, we found that the ethanol extract of the seeds of *P. edulis* inhibited 64.7% of sEH activity at a concentration of $37.5 \,\mu\text{g/mL}$. This extract was then partitioned with dichloromethane (CH₂Cl₂), ethyl acetate (EtOAc) fractions and aqueous residue. In the preliminary experiment, we tested the inhibitory activity of these fractions at 37.5, 75.0 and 150.0 $\mu\text{g/mL}$.

Based on the results in Table 1, CH_2Cl_2 - soluble fraction showed 91.8% inhibition at the concentration of 37.5 µg/ mL, which was approximately 2.0-fold more potent than aqueous layer (48.7%). Interestingly, the EtOAc-soluble fraction exhibited very potently with > 100% sEH activity at the same concentration. Considering that EtOAc-soluble fraction showed the strongest action, our subsequent studies focused on the isolation of active components. This sub-fraction was subjected to column chromatography on a silica gel and C18-RP silica gel column to obtain five compounds (**1** – **5**) (Fig. 1).

Compound 1 was obtained as an ivory amorphous powder. The ¹H-NMR of **1** showed signals the presence of 1,3,5-trisubstituted benzene ring characterized with AB₂ system [$\delta_{\rm H}$ 6.47 (2H, d, J = 2.0 Hz, H-2/H-6) and 6.18 (1H, t, J = 2.0 Hz, H-4)], and a 1,4-disubstituted benzene ring characterized with an A₂B₂ system [$\delta_{\rm H}$ 7.36 (2H, d, J = 8.5 Hz, H-2'/H-6') and 6.78 (2H, d, J = 8.5 Hz, Hz)H-3'/H-5') together with *trans*-olefinic protons [$\delta_{\rm H}$ 6.97 (1H, d, J = 16.0 Hz, H-8) and 6.81 (1H, d, J = 16.0 Hz,H-7)] (Fig. 1). The ¹³C-NMR spectrum of 1 exhibited 14 carbon signals including 12 aromatic carbons [$\delta_{\rm C}$ 102.6 – 159.6], belonging to two benzene rings, and two olefinic carbons [$\delta_{\rm C}$ 129.3 (C-7), and 128.7 (C-8)] (Fig. 1). The ESI-MS data of 1 indicated the pseudo molecular ion at m/z 229.09 for the [M+H]⁺, indicating a molecular weight of 228. Its molecular formula was determined to be C₁₄H₁₂O₃, according to ESI-MS, ¹H- and ¹³C-NMR spectroscopic data. Based on the above evidence and comparison with reported data,²⁶ compound 1 was identified

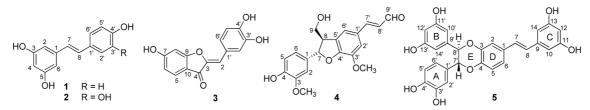


Fig. 1. The structures of isolated compounds (1 - 5) from the seeds of P. edulis.

as *trans*-resveratrol. Compound **2**, a derivative of **1**, which the ¹H- and ¹³C-NMR spectra were similar to those of **1** except for the presence of 1,3,4-trisubstituted benzene ring characterized with ABX system [$\delta_{\rm H}$ 7.07 (1H, d, J = 2.0 Hz, H-2'), 6.89 (1H, dd, J = 8.5, 2.0 Hz, H-6'), and 6.82 (1H, d, J = 8.5 Hz, H-5')] in **2** (Fig. 1). The ESI-MS spectrum of compound **2** showed the pseudo molecular ion at m/z 245.08 [M+H]⁺, indicating the molecular formula C₁₄H₁₂O₄. Thus, compound **2** was identified as *trans*-piceatannol in comparison with literature data.²⁷ These compounds (**1** – **2**) possess the basics of stilbene skeleton and are known to inhibit anti-oxidant, anti-inflammatory, anti-diabetes and anticancer.²⁸

Compound 3 was obtained as yellow amorphous solid. The ¹H-NMR of **3** showed signals of 1,2,4-trisubstituted benzene rings characterized with two ABX systems [$\delta_{\rm H}$ 7.63 (1H, d, J = 8.5 Hz, H-5), 7.54 (1H, d, J = 2.0 Hz, H-8), and 7.26 (1H, dd, J = 8.5, 2.0 Hz, H-6); $\delta_{\rm H}$ 6.86 (1H, d, J = 8.5, Hz, H-5'), 6.73 (1H, d, J = 2.0 Hz, H-2'), and 6.72 (1H, dd, J = 8.5, 2.0 Hz, H-6')], together with an olefinic proton at $\delta_{\rm H}$ 6.71 (1H, s, H-2) (Fig. 1). The $^{13}\text{C-}$ NMR and distortionless enhancement by polarization transfer (DEPT) spectra of 3 showed signals for six aromatic quaternary carbon [$\delta_{\rm C}$ 169.8 (C-7), 168.4 (C-9), 149.3 (C-4'), 146.7 (C-3'), 125.5 (C-1'), 114.8 (C-10)] and six aromatic carbons [$\delta_{\rm C}$ 126.8 (C-5), 126.3 (C-6'), 118.9 (C-2'), 116.7 (C-5'), 114.6 (C-6) and 99.3 (C-8)] (Fig. 1). Furthermore, a carbonyl carbon at $\delta_{\rm C}$ 184.5 (C-4), together with two olefinic carbons [$\delta_{\rm C}$ 147.7 (C-3), and 114.1 (C-2)] were also observed in the ¹³C NMR spectrum indicated that 3 was aurone skeleton (Fig. 1).²⁹ The ESI-MS spectrum of compound 3 showed the pseudo molecular ion at m/z 271.06 [M+H]⁺, indicating the molecular formula C15H10O5. Based on the above evidence and comparison with reported data,³⁰ compound 3 was identified as sulfuretin, which was isolated from P. edulis for the first time. This compound possessed anti-inflammatory,³¹ anticancer,³² and neuroprotective activities.³³

Compound **4** was isolated as yellow amorphous powder. The ¹H-NMR spectrum of **4** showed an aldehyde proton at $\delta_{\rm H}$ 9.60 (1H, d, J = 8.0 Hz, H-9'), *trans*-olefinic

protons at $\delta_{\rm H}$ 6.70 (1H, dd, J=15.5, 8.0 Hz, H-8') and 7.61 (1H, d, J = 15.5 Hz, H-7'), which were assigned to a trans-cinnamaldehyde moiety. In addition, the ¹H-NMR of 4 showed two sets of aromatic protons signal [$\delta_{\rm H}$ 6.97 (1H, s, H-2), 6.85 (1H, d, J=8.0 Hz, H-5), 6.80 (1H, d, J = 8.0, H-6); $\delta_{\rm H}$ 7.31 (1H, s, H-6'), 7.25 (1H, s, H-2') arising from 1,3,4-trisubstituted and 1,3,4,5-tetrasubstituted benzene rings, respectively (Fig. 1). A stereochemistry of the dihydrobenzofuran ring [$\delta_{\rm H}$ 5.63 (1H, d, J = 6.5 Hz, H-7), $\delta_{\rm H}$ 3.59 (1H, q, J = 6.5 Hz, H-8) and $\delta_{\rm H}$ 3.91-3.87 (2H, m, H-9)], and two singlets of methoxy groups [$\delta_{\rm H}$ 3.92 (3H, s, 3'-OCH₃), and 3.84 (3H, s, 3-OCH₃)] were also observed in the ¹H-NMR spectrum. The large proton coupling constant between H-7 and H-8 ($J_{7.8} = 6.5$ Hz) suggested the dihydrofuran ring has a trans-configuration. The ¹³C-NMR and DEPT spectra of 4 revealed the presence of twelve aromatic carbons, two olefinic carbons, an aldehyde carbon [$\delta_{\rm C}$ 196.1 (C-9')], a hydroxymethyl carbon [$\delta_{\rm C}$ 64.5 (C-9)] and two methoxy carbons [$\delta_{\rm C}$ 56.8 (3-OCH₃), and 56.4 (3'-OCH₃)] (Fig. 1). The HMBC correlations of proton H-2 at $\delta_{\rm H}$ 6.97 (1H, s) and methoxy protons at $\delta_{\rm H}$ 3.84 (3H, s) to carbon signal at $\delta_{\rm C}$ 149.2 (C-3), as well as proton H-2' at $\delta_{\rm H}$ 7.25 (1H, s) and methoxy protons at $\delta_{\rm H}$ 3.92 (3H, s) to carbon signal at $\delta_{\rm C}$ 156.1 (C-3'), suggested that two methoxy groups were located at C-3 and C-3' (Fig. 1). Further analysis of these signals by the COSY, HMQC and HMBC spectra led to the partial structures of 4. The ESI-MS data of 4 indicated the pseudo molecular ion at m/z 357.14 for the [M+H]⁺, indicating a molecular weight of 356. Its molecular formula was determined to be $C_{20}H_{20}O_6$, according to ESI-MS, ¹H- and ¹³C-NMR spectroscopic data. Therefore, compound 4 was identified as (+)-balanophonin,³⁴ which was isolated from Passiflora genus for the first time. This compound was known to possess anti-oxidant, 35,36 anticholinesterase,36 anti-inflammatory, anticancer, and antineurodegenerative activities.³⁷

Compound **5** was isolated as brown amorphous powder. The ¹H-NMR spectrum of **5** showed the presence of two ABX system signals for the A ring [$\delta_{\rm H}$ 6.68 (1H, d, J = 2.0 Hz, H-2'), 6.67 (1H, d, J = 8.5 Hz, H-5'), 6.50 (1H,

dd, J = 8.5, 2.0 Hz, H-6')] and the D ring [$\delta_{\rm H}$ 7.15 (1H, d, J = 2.0 Hz, H-2), 7.09 (1H, dd, J = 8.5, 2.0 Hz, H-6), 6.96 (1H, d, J = 8.5 Hz, H-5)], two sets of AB₂ system signals for the B and C rings [6.48 (2H, overlap, H-12/H-12'), 6.19 (1H, t, J=2.0 Hz, H-14'), 6.17 (1H, t, J=2.0 Hz, H-10'), 6.12 (2H, d, J = 2.0 Hz, H-10/H-14)], two doublets for the *trans*-olefinic protons [$\delta_{\rm H}$ 6.99 (1H, d, J = 16.0 Hz, H-7), 6.88 (1H, d, J = 16.0 Hz, H-8)], and two equivalent oxybenzyl methine protons [$\delta_{\rm H}$ 4.75 (2H, d, J=2.5 Hz, H-7'/H-8')] (Fig. 1). The ¹³C-NMR and DEPT spectra of 5 exhibited 28 carbon signals including 24 aromatic carbons $[\delta_{\rm C} \ 102.9 - 159.6]$, belonging to four benzene rings, and two olefinic carbons [$\delta_{\rm C}$ 129.4 (C-7), and 128.4 (C-8)]. In addition, the carbon signals [$\delta_{\rm C}$ 82.2 (C-8') and 81.8 (C-7')] indicate the presence of two equivalent oxybenzyl methine carbons. Analysis of these signals by the COSY, HMQC and HMBC spectra led to the partial structures of compound 5 (Fig. 1). The ESI-MS data of 5 indicated the pseudo molecular ion at m/z 487.13 for the [M+H]⁺, indicating a molecular weight of 486. Its molecular formula was determined to be C₂₈H₂₂O₈, according to ESI-MS, 1H- and 13C-NMR spectroscopic data. The relative configuration between the C-7' and the C-8' positions was concluded to be cis from the coupling constant of the two oxybenzylmethine protons (J=2.5)Hz). Based on the above evidence and comparison with reported data,³⁸ compound 5 was identified as cassigarol E, which was isolated from Passiflora genus for the first time. Cassigarol E possessed anti-HIV-1,³⁹ antidiabetic,⁴⁰ and anticancer activities.41

The effect of isolated compounds (1-5) from *P. edulis* on sEH inhibitory activities was evaluated. The sEH inhibitory activities were determined using recombinant human sEH incubated with PHOME, an artificial substrate for fluorescence detection with AUDA (IC₅₀ value 4.4 nM), a sEH inhibitor as the positive control. The result showed that compound 4 had no inhibitory (N.I) effect on the activity of enzyme sEH at a concentration of 100μ M, while compounds 1 and 2 at a concentration of $100 \,\mu M$ exhibited the highest sEH inhibitory activity (>100%) (Table 1). Sulfuretin (3), and cassigarol E (5) also showed a strong inhibitory effect on sEH with their inhibition values in the range of 74.6 and 77.7%, respectively (Table 1). Compounds 1 - 3, and 5 showed inhibitory rates over 50% and were further evaluated at concentrations ranging from 6.2 to 100 μ M, to elucidate the IC₅₀ values. These inhibitors (1 - 3, and 5) showed dose-dependent inhibition, with IC₅₀ values of 14.2 ± 0.6 , 3.4 ± 4.8 , 15.8 ± 1.0 , and $14.4 \pm 0.8 \,\mu\text{M}$, respectively (Table 2).

Previously, natural plant components with stilbene

Natural Product Sciences

Table 1. E	ffects of ex	tracts of P.	edulis on	sEH	inhibitory	activity
------------	--------------	--------------	-----------	-----	------------	----------

Fractions	Inhibition rate $(\%)^a$				
Flactions	37.5 μg/mL	75 μg/mL	150 µg/mL		
EtOH	64.7 ± 0.4	97.9 ± 0.7	> 100		
CH_2Cl_2	91.8 ± 3.3	95.4 ± 0.4	> 100		
EtOAc	> 100	> 100	> 100		
Aqueous layer	48.7 ± 0.9	61.8 ± 2.2	71.5 ± 1.5		

^a Extracts and fractions were tested three times.

 Table 2. The sEH inhibitory activities of isolated compounds from *P. edulis*

Compound	100 µM (%)	IC_{50} value $(\mu M)^a$
1	>100	14.2 ± 0.6
2	>100	3.4 ± 4.8
3	74.6 ± 0.4	15.8 ± 1.0
4	N.I	N.T
5	77.7 ± 1.3	14.4 ± 0.8
\mathbf{AUDA}^b	68.9 ± 0.3	$4.4\pm0.1\;(nM)$

N.T: Not tested.

N.I: Not inhibition.

^a Compounds were tested three times.

^bAUDA was used as a positive control.

skeletons from other plants have also shown inhibitory effects on sEH activity. Rhapontigenin, isorhapontin and astringin from Rheum undulatum (Polygonaceae),8 and 2isopropyl-5-[(E)-2- phenylvinyl]benzene-1,3-diol have displayed potent sEH inhibitory activity.42 Several stilbene from Polygonum multiflorum (Polygonaceae), such as (E)-2,3,5,4'-tetrahydroxystilbene-2-O- β -D-glucoside, (E)-2,3,5,4'-tetrahydroxystilbene-2-O- β -D-xyloside, and (E)-2,3,5,4'-tetrahydroxystilbene-2-O-B-D-(6"-O-acetyl)-glucoside completely inhibited sEH in a dose-dependent manner, with low IC₅₀ values.⁴³ As in this study, some isolated stilbenes from P. edulis can manifest sEH inhibitory activity. Such compounds have been purified from natural medicinal plants for many years all over the world. In addition to other medicinal properties, such as anti-inflammatory, anticancer, and antioxidant activities, the sEH inhibitory activity is worthy of notice, because low-molecular-weight materials can easily reach the site of action following oral administration since they cross the blood-brain barrier.44

Acknowledgments

We would like to thank Vietnam Academy of Science and Technology (VAST), Vietnam for financial support (under grand No. VAST.CTG.03/17-18) and Nafoods Group JSC for providing materials.

References

(1) Morisseau, C.; Hammock, B. D. Annu. Rev. Pharmacol. Toxicol. 2013, 53, 37-58.

- (2) Morisseau, C.; Inceoglu, B.; Schmelzer, K.; Tsai, H. J.; Jinks, S. L.; Hegedus, C. M.; Hammock, B. D. *J. Lipid Res.* **2010**, *51*, 3481-3490.
- (3) Lin, W. K.; Falck, J. R.; Wong, P. Y. Biochem. Biophys. Res. Commun. 1990, 167, 977-981.
- (4) Inceoglu, B.; Jinks, S. L.; Schmelzer, K. R.; Waite, T.; Kim, I. H.; Hammock, B. D. *Life Sci.* **2006**, *79*, 2311-2319.
- (5) Yu, Z.; Xu, F.; Huse, L. M.; Morisseau, C.; Draper, A. J.; Newman,
- J. W.; Parker, C.; Graham, L.; Engler, M. M.; Hammock, B. D.; Zeldin, D. C.; Kroetz, D. L. *Circ. Res.* **2000**, *87*, 992-998.
- (6) Kim, J. H.; Tai, B. H.; Yang, S. Y.; Kim, J. E.; Kim, S. K.; Kim, Y. H. Bull. Korean Chem. Soc. 2015, 36, 300-304.
- (7) Kim, J. H.; Cho, C. W.; Tai, B. H.; Yang, S. Y.; Choi, G. S.; Kang, J. S.; Kim, Y. H. *Molecules* **2015**, *20*, 21405-21414.
- (8) Jo, A. R.; Kim, J. H.; Yan, X. T.; Yang, S. Y.; Kim, Y. H. J. Enzyme Inhib. Med. Chem. 2016, 31, 70-78.
- (9) Lee, G. Y.; Kim, J. H.; Choi, S. K.; Kim, Y. H. *Bioorg. Med. Chem. Lett.* **2015**, *25*, 5097-5101.
- (10) Kim, J. H.; Morgan, A. M. A.; Tai, B. H.; Van, D. T.; Cuong, N. M.; Kim, Y. H. *J. Enzyme Inhib. Med. Chem.* **2016**, *31*, 640-644.
- (11) Khanh, P. N.; Duc, H. V.; Huong, T. T.; Son, N. T.; Ha, V. T.; Van,
 D. T.; Tai, B. H.; Kim, J. E.; Jo, A. R.; Kim, Y. H.; Cuong, N. M.
 Fitoterapia 2016, 109, 39-44.
- (12) Thokchom, R.; Mandal, G. J. Agric. Eng. Food Technol. 2017, 4, 27-30.
- (13) Beninca, J. P.; Montanher, A. B.; Zucolotto, S. M.; Schenkel, E. P.; Frode, T. S. *Food Chem.* **2007**, *104*, 1097-1105.
- (14) Ichimura, T.; Yamanaka, A.; Ichiba, T.; Toyokawa, T.; Kamada, Y.; Tamamura, T.; Maruyama, S. *Biosci. Biotechnol. Biochem.* **2006**, *70*, 718-721.
- (15) Lourith, N.; Kanlayavattanakul, M. *J. Oleo Sci.* 2013, *64*, 235-240.
 (16) Puricelli, L.; Dell'Aica, I.; Sartorb, L.; Garbisa, S.; Caniato, R. *Fitoterapia* 2003, *74*, 302-304.
- (17) Coleta, M.; Campos, M. G; Cotrim, M. D.; Proenca da Cunha, A. *Pharmacopsychiatry* **2001**, *34*, S20-S21.
- (18) Pelegrini, P. B.; Noronha, E. F.; Muniz, M. A.; Vasconcelos, I. M.; Chiarello, M. D.; Oliveira, J. T.; Franco, O. L. *Biochim. Biophys. Acta.* **2006**, *1764*, 1141-1146.
- (19) Matsui, Y.; Sugiyama, K.; Kamei, M.; Takahashi, T.; Suzuki, T.; Katagata, Y.; Ito, T. J. Agric. Food Chem. **2010**, *58*, 11112-11118.
- (20) Bombardelli, E.; Bonati, A.; Gabetta, B.; Martinelli, E. M.; Mustich, G; Danieli, G. *Phytochemisty* **1975**, *14*, 2661-2665.
- (21) Mareck, U.; Herrmann, K.; Galensa, R.; Wray, V. *Phytochemistry* **1991**, *30*, 3486-3487.
- (22) Seigler, D. S.; Pauli, G. F.; Nahrstedt, A.; Leen, R. *Phytochemistry* **2002**, *60*, 873-882.
- (23) Pereira, C. A.; Yariwake, J. H.; Lancas, F. M.; Wauters, J. N.; Tits, M.; Angenot, L. *Phytochem. Anal.* **2004**, *15*, 241-248.

- (24) Sano, S.; Sugiyama, K.; Ito, T.; Katano, Y.; Ishihata, A. J. Agric. Food Chem. 2011, 59, 6209-6213.
- (25) Piombo, G; Barouh N.; Barea, B.; Boulanger, R.; Brat, P.; Pina, M.; Villeneuve, P. *OCL* **2006**, *13*, 195-199.
- (26) Mattivi, F.; Reniero, F.; Korhammer, S. J. Agric. Food Chem. 1995, 43, 1820-1823.
- (27) Mathi, P.; Das, S.; Nikhil, K.; Roy, P.; Yerra, S.; Ravada, S. R.; Bokka, V. R.; Botlagunta, M. *Int. J. Prev. Med.* **2015**, *6*, 101.
- (28) Kukreja, A.; Wadhwa, N.; Tiwari, A. J. Blood Disord. Transfus. 2014, 5, 240.
- (29) Gaur, R.; Kumar, S.; Trivedi, P.; Bhakuni, R. S.; Bawankule, D. U.; Pal, A.; Shanker, K. *Nat. Prod. Commun.* **2010**, *5*, 1243-1246.
- (30) Júnior, G. M. V.; Sousa, C. M. M.; Cavalheiro, A. J.; Lago, J. H. G.; Chaves, M. H. *Helv. Chim. Acta* **2008**, *91*, 2159-2167.
- (31) Lee, D. S.; Jeong, G. S.; Li, B.; Park, H.; Kim, Y. C. Int. Immunopharmacol. 2010, 10, 850-858.
- (32) Lee, K. W.; Chung, K. S.; Seo, J. H.; Yim, S. V.; Park, H. J.; Choi, J. H.; Lee, K. T. J. Cell. Biochem. 2012, 113, 2835-2844.
- (33) Pariyar, R.; Lamichhane, R.; Jung, H. J.; Kim, S. Y.; Seo, J. *Int. J. Mol. Sci.* **2017**, *18*, E2753.
- (34) Li, J. L.; Li, N.; Xing, S. S.; Zhang, N.; Li, B. B.; Chen, J. G; Ahn, J. S.; Cui, L. Arch. Pharm. Res. 2017, 40, 1265-1270.
- (35) Esposito, T.; Sansone, F.; Franceschelli, S.; Del Gaudio, P.; Picerno, P.; Aquino, R. P.; Mencherini, T. *Int. J. Mol. Sci.* **2017**, *18*, E392.
- (36) Boğa, M.; Yilmaz, P. K.; Cebe, D. B.; Fatima, M.; Siddiqui, B. S.; Kolak, U. Z. Naturforsch C J. Biosci. **2014**, *69*, 381-390.
- (37) Lim, S. Y.; Subedi, L.; Shin, D.; Kim, C. S.; Lee, K. R.; Kim, S. Y. *Biomol. Ther.* **2017**, *25*, 519-527.
- (38) Baba, K.; Kido, T.; Taniguchi, M.; Kozawaqa, M. *Phytochemistry* **1994**, *36*, 1509-1513.
- (39) Bunluepuech, K.; Wattanapiromsakul, C.; Tewtrakul, S. Songklanakarin J. Sci. Technol. 2013, 35, 665-669.
- (40) Tran, H. H. T.; Nguyen, M. C.; Le, H. T.; Nguyen, T. L.; Pham, T. B.; Chau, V. M.; Nguyen, H. N.; Nguyen, T. D. *Pharm. Biol.* **2014**, *52*, 74-77.
- (41) Yuenyongsawad, S.; Bunluepuech, K.; Wattanapiromsakul, C.; Tewtrakul, S. Songklanakarin J. Sci. Technol. **2014**, *36*, 189-194.
- (42) Buscató, E.; Büttner, D.; Brüggerhoff, A.; Klingler, F. M.; Weber,
- J.; Scholz, B.; Zivković, A.; Marschalek, R.; Stark, H.; Steinhilber, D.; Bode, H. B.; Proschak, E. *ChemMedChem* **2013**, *8*, 919-923.
- (43) Sun, Y. N.; Li, W.; Kim, J. H.; Yan, X. T.; Kim, J. E.; Yang, S. Y.; Kim, Y. H. Arch. Pharm. Res. **2015**, *38*, 998-1004.
- (44) Broadwell, R. D.; Sofroniew, M. V. Exp. Neurol. 1993, 120, 245-263.

Received August 28, 2019 Revised October 17, 2019 Accepted October 21, 2019