Browse > Article
http://dx.doi.org/10.5423/PPJ.2008.24.3.245

Message in a Bottle: Chemical Biology of Induced Disease Resistance in Plants  

Schreiber, Karl (Department of Cell & Systems Biology, University of Toronto)
Desveaux, Darrell (Department of Cell & Systems Biology, University of Toronto)
Publication Information
The Plant Pathology Journal / v.24, no.3, 2008 , pp. 245-268 More about this Journal
Abstract
The outcome of plant-pathogen interactions is influenced significantly by endogenous small molecules that coordinate plant defence responses. There is currently tremendous scientific and commercial interest in identifying chemicals whose exogenous application activates plant defences and affords protection from pathogen infection. In this review, we provide a survey of compounds known to induce disease resistance in plants, with particular emphasis on how each compound was originally identified, its putative or demonstrated mechanism of defence induction, and the known biological target(s) of each chemical. Larger polymeric structures and peptides/proteins are also discussed in this context. The quest for novel defence-inducing molecules would be aided by the capability for high-throughput analysis of candidate compounds, and we describe some issues associated with the development of these types of screens. Subsequent characterization of hits can be a formidable challenge, especially in terms of identifying chemical targets in plant cells. A variety of powerful molecular tools are available for this characterization, not only to provide insight into methods of plant defence activation, but also to probe fundamental biological processes. Furthermore, these investigations can reveal molecules with significant commercial potential as crop protectants, although a number of factors must be considered for this potential to be realized. By highlighting recent progress in the application of chemical biology techniques for the modulation of plant-pathogen interactions, we provide some perspective on the exciting opportunities for future progress in this field of research.
Keywords
Citations & Related Records

Times Cited By Web Of Science : 8  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Cohen, Y. R. 2002. $\beta$-aminobutyric acid-induced resistance against plant pathogens. Plant Dis. 86:448-457   DOI   ScienceOn
2 Declercq, E., Eckstein, F. and Merigan, T. C. 1970. Structural requirements for synthetic polyanions to act as interferon inducers. Ann. N.Y. Acad. Sci. 173:444-&   DOI   ScienceOn
3 Deepak, S. A., Raj, S. N., Umemura, K., Kono, T. and Shetty, H. S. 2003. Cerebroside as an elicitor for induced resistance against the downy mildew pathogen in pearl millet. Ann. Appl. Biol. 143:169-173   DOI   ScienceOn
4 Delaney, T. P., Uknes, S., Vernooij, B., Friedrich, L., Weymann, K., Negrotto, D., Gaffney, T., Gutrella, M., Kessmann, H., Ward, E. and Ryals, J. 1994. A central role of salicylic acid in plant disease resistance. Science 266:1247-1250   DOI   ScienceOn
5 Desaki, Y., Miya, A., Venkatesh, B., Tsuyumu, S., Yamane, H., Kaku, H., Minami, E. and Shibuya, N. 2006. Bacterial lipopolysaccharides induce defense responses associated with programmed cell death in rice cells. Plant Cell Physiol. 47:1530-1540   DOI   ScienceOn
6 Borges, A. A., Borges-Perez, A. and Fernandez-Falcon, M. 2004. Induced resistance to Fusarial wilt of banana by menadione sodium bisulphite treatments. Crop Prot. 23:1245-1247   DOI   ScienceOn
7 Bostock, R. M., Kuc, J. A. and Laine, R. A. 1981. Eicosapentaenoic and arachidonic acids from Phytophthora infestans elicit fungitoxic sesquiterpenes in the potato. Science 212:67-69   DOI
8 Basse, C. W., Fath, A. and Boller, T. 1993. High affinity binding of glycopeptide elicitor to tomato cells and microsomal membranes and displacement by specific glycan suppressors. J. Biol. Chem. 268:14724-14731
9 Baureithel, K., Felix, G. and Boller, T. 1994. Specific, high-affinity binding of chitin fragments to tomato cells and membranes. J. Biol. Chem. 269:17931-17938
10 Alonso, J. M., Stepanova, A. N., Leisse, T. J., Kim, C. J., Chen, H. M., Shinn, P., Stevenson, D. K., Zimmerman, J., Barajas, P., Cheuk, R., Gadrinab, C., Heller, C., Jeske, A., Koesema, E., Meyers, C. C., Parker, H., Prednis, L., Ansari, Y., Choy, N., Deen, H., Geralt, M., Hazari, N., Hom, E., Karnes, M., Mulholland, C., Ndubaku, R., Schmidt, I., Guzman, P., Aguilar-Henonin, L., Schmid, M., Weigel, D., Carter, D. E., Marchand, T., Risseeuw, E., Brogden, D., Zeko, A., Crosby, W. L., Berry, C. C. and Ecker, J. R. 2003. Genome-wide Insertional mutagenesis of Arabidopsis thaliana. Science 301:653-657   DOI   ScienceOn
11 Amruthesh, K. N., Geetha, N. P., Jorgensen, H. J. L., de Neergaard, E. and Shetty, H. S. 2005. Unsaturated fatty acids from zoospores of Sclerospora graminicola induce resistance in pearl millet. Eur. J. Plant Pathol. 111:125-137   DOI   ScienceOn
12 Agrawal, G. K., Rakwal, R., Tamogami, S., Yonekura, M., Kubo, A. and Saji, H. 2002. Chitosan activates defense/stress response(s) in the leaves of Oryza sativa seedlings. Plant Physiol. Bioch. 40:1061-1069   DOI   ScienceOn
13 Ahl, P., Gianinazzi, S., Samson, R. and Benjama, A. 1985. Cultivar dependence of polyacrylic acid effects on Pseudomonas syringae in Nicotiana tabacum. Plant Pathol. 34:221-227   DOI
14 Ahn, I. P., Kim, S. and Lee, Y. H. 2005. Vitamin $B_{1}$ functions as an activator of plant disease resistance. Plant Physiol. 138:1505-1515   DOI   ScienceOn
15 Aziz, A., Poinssot, B., Daire, X., Adrian, M., Bezier, A., Lambert, B., Joubert, J. M. and Pugin, A. 2003. Laminarin elicits defense responses in grapevine and induces protection against Botrytis cinerea and Plasmopara viticola. Mol. Plant-Microbe Interact. 16:1118-1128   DOI   ScienceOn
16 Liang, H., Yao, N., Song, L. T., Luo, S., Lu, H. and Greenberg, L. T. 2003. Ceramides modulate programmed cell death in plants. Genes Dev. 17:2636-2641   DOI   ScienceOn
17 Lebel, E., Heifetz, P., Thorne, L., Uknes, S., Ryals, J. and Ward, E. 1998. Functional analysis of regulatory sequences controlling PR-1 gene expression in Arabidopsis. Plant J. 16:223-233   DOI   ScienceOn
18 Lherminier, J., Benhamou, N., Larrue, J., Milat, M. L., Boudon-Padieu, E., Nicole, M. and Blein, J. P. 2003. Cytological characterization of elicitin-induced protection in tobacco plants infected by Phytophthora parasitica or phytoplasma. Phytopathology 93:1308-1319   DOI   ScienceOn
19 Li, X., Song, Y. J., Century, K., Straight, S., Ronald, P., Dong, X. N., Lassner, M. and Zhang, Y. L. 2001. A fast neutron deletion mutagenesis-based reverse genetics system for plants. Plant J. 27:235-242   DOI   ScienceOn
20 Lin, Y. Z., Chen, H. Y., Kao, R., Chang, S. P., Chang, S. J. and Lai, E. M. 2008. Proteomic analysis of rice defense response induced by probenazole. Phytochem. 69:715-728   DOI   ScienceOn
21 Huffaker, A., Pearce, G. and Ryan, C. A. 2006. An endogenous peptide signal in Arabidopsis activates components of the innate immune response. Proc. Natl. Acad. Sci. USA 103: 10098-10103   DOI   ScienceOn
22 Kasparovsky, T., Milat, M. L., Humbert, C., Blein, J. P., Havel, L. and Mikes, V. 2003. Elicitation of tobacco cells with ergosterol activates a signal pathway including mobilization of internal calcium. Plant Physiol. Bioch. 41:495-501   DOI   ScienceOn
23 Inverarity, I. A. and Hulme, A. N. 2007. Marked small molecule libraries: a truncated approach to molecular probe design. Org. Biomol. Chem. 5:636-643   DOI   ScienceOn
24 Iriti, M. and Faoro, F. 2003. Benzothiadiazole (BTH) induces celldeath independent resistance in Phaseolus vulgaris against Uromyces appendiculatus. J. Phytopathol. 151:171-180   DOI   ScienceOn
25 Huffaker, A. and Ryan, C. A. 2007. Endogenous peptide defense signals in Arabidopsis differentially amplify signaling for the innate immune response. Proc. Natl. Acad. Sci. USA 104: 10732-10736   DOI   ScienceOn
26 Husebye, H., Halaas, O., Stenmark, H., Tunheim, G., Sandanger, O., Bogen, B., Brech, A., Latz, E. and Espevik, T. 2006. Endocytic pathways regulate Toll-like receptor 4 signaling and link innate and adaptive immunity. EMBO J. 25:683-692   DOI   ScienceOn
27 Hodgson, W. A., Munro, J., Singh, R. P. and Wood, F. A. 1969. Isolation from Phytophthora infestans of a polysaccharide that inhibits potato virus X. Phytopathology 59:1334-1335
28 Iriti, M. and Faoro, F. 2007. Review of innate and specific immunity in plants and animals. Mycopathologia 164:57-64   DOI   ScienceOn
29 Jones, J. 2001. Harpin. Pest. Outlook 12:134-135   DOI   ScienceOn
30 Jakab, G., Cottier, V., Toquin, V., Rigoli, G., Zimmerli, L., Metraux, J. P. and Mauch-Mani, B. 2001. b-aminobutyric acid-induced resistance in plants. Eur. J. Plant Pathol. 107:29-37   DOI   ScienceOn
31 Kaku, H., Nishizawa, Y., Ishii-Minami, N., Akimoto-Tomiyama, C., Dohmae, N., Takio, K., Minami, E. and Shibuya, N. 2006. Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proc. Natl. Acad. Sci. USA 103:11086-11091   DOI   ScienceOn
32 Poschenrieder, C., Tolra, R. and Barcelo, J. 2006. Can metals defend plants against biotic stress? Trends Plant Sci. 11:288-295   DOI   ScienceOn
33 Prithiviraj, B., Perry, L. G., Badri, D. V. and Vivanco, J. M. 2007. Chemical facilitation and induced pathogen resistance mediated by a root-secreted phytotoxin. New Phytol. 173:852-860   DOI   ScienceOn
34 Pushpalatha, H. G., Mythrashree, S. R., Shetty, R., Geetha, N. P., Sharathchandra, R. G., Amruthesh, K. N. and Shetty, H. S. 2007. Ability of vitamins to induce downy mildew disease resistance and growth promotion in pearl millet. Crop Prot. 26:1674-1681   DOI   ScienceOn
35 Qin, G. Z. and Tian, S. P. 2005. Enhancement of biocontrol activity of Cryptococcus laurentii by silicon and the possible mechanisms involved. Phytopathology 95:69-75   DOI   ScienceOn
36 Papavizas, G. C. 1964. Greenhouse control of Aphanomyces root rot of peas with aminobutyric acid and methyaspartic acid. Plant Dis. Rep. 48:537-541
37 Park, S. W., Kaimoyo, E., Kumar, D., Mosher, S. and Klessig, D. F. 2007. Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science 318:113-116   DOI   ScienceOn
38 Nurnberger, T., Brunner, F., Kemmerling, B. and Piater, L. 2004. Innate immunity in plants and animals: striking similarities and obvious differences. Immunol. Rev. 198:249-266   DOI   ScienceOn
39 Nishimura, M. T., Stein, M., Hou, B. H., Vogel, J. P., Edwards, H. and Somerville, S. C. 2003. Loss of a callose synthase results in salicylic acid-dependent disease resistance. Science 301:969-972   DOI   ScienceOn
40 Nishioka, M., Nakashita, H., Yasuda, M., Yoshida, S. and Yamaguchi, I. 2005. Induction of resistance against rice bacterial leaf blight by 3-chloro-1-methyl-1H-pyrazole-5-carboxylic acid. J. Pest. Sci. 30:47-49   DOI   ScienceOn
41 Pontzen, R. and Scheinpflug, H. 1989. Effects of triazole fungicides on sterol biosynthesis during spore germination of Botrytis cinerea, Venturia inaequalis and Puccinia graminis f.sp. tritici. Neth. J. Plant Pathol. 95:151-160   DOI
42 Newman, M. A., von Roepenack, E., Daniels, M. and Dow, M. 2000. Lipopolysaccharides and plant responses to phytopathogenic bacteria. Mol. Plant Pathol. 1:25-31   DOI   ScienceOn
43 Newman, M. A., von Roepenack-Lahaye, E., Parr, A., Daniels, M. J. and Dow, J. M. 2002. Prior exposure to lipopolysaccharide potentiates expression of plant defenses in response to bacteria. Plant J. 29:487-495   DOI   ScienceOn
44 Nakashita, H., Yasuda, M., Okage, R., Nishioka, M., Arie, T. and Yoshida, S. 2003b. A pyrazole derivative induce systemic acquired resistance with a new type of action. Plant Cell Physiol. 44:S179-S179
45 Nakashita, H., Yoshioka, K., Takayama, M., Kuga, R., Midoh, N., Usami, R., Horikoshi, K., Yoneyama, K. and Yamaguchi, I. 2001. Characterization of PBZ1, a probenazole-inducible gene, in suspension-cultured rice cells. Biosci. Biotech. Bioch. 65:205-208   DOI   ScienceOn
46 Mauch-Mani, B. and Mauch, F. 2005. The role of abscisic acid in plant-pathogen interactions. Curr. Opin. Plant Biol. 8:409-414   DOI   ScienceOn
47 Menard, R., de Ruffray, P., Fritig, B., Yvin, J. C. and Kauffmann, S. 2005. Defense and resistance-inducing activities in tobacco of the sulfated b-1,3 glucan PS3 and its synergistic activities with the unsulfated molecule. Plant Cell Physiol. 46:1964-1972   DOI   ScienceOn
48 Metraux, J. P., Ahl-Goy, P., Staub, T., Speich, J., Steinemann, A., Ryals, J. and Ward, E. 1991. Induced systemic resistance in cucumber in response to 2,6-dichloroisonicotinic acid and pathogens. In Advances in Molecular Genetics of Plant-Microbe Interactions, ed. by H. Hennecke and D.P.S. Verma. pp. 432-439. Kluwer, Dordecht, The Netherlands
49 Maldonado, A. M., Doerner, P., Dixon, R. A., Lamb, C. J. and Cameron, R. K. 2002. A putative lipid transfer protein involved in systemic resistance signalling in Arabidopsis. Nature 419:399-403   DOI   ScienceOn
50 Navarro, L., Dunoyer, P., Jay, F., Arnold, B., Dharmasiri, N., Estelle, M., Voinnet, O. and Jones, J. D. G. 2006. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436-439   DOI   ScienceOn
51 Heil, M., Hilpert, A., Kaiser, W. and Linsenmair, K. E. 2000. Reduced growth and seed set following chemical induction of pathogen defence: does systemic acquired resistance (SAR) incur allocation costs? J. Ecol. 88:645-654   DOI   ScienceOn
52 Heil, M. and Baldwin, I. T. 2002. Fitness costs of induced resistance: emerging experimental support for a slippery concept. Trends Plant Sci. 7:61-67   DOI   ScienceOn
53 Herbers, K., Meuwly, P., Frommer, W. B., Metraux, J. P. and Sonnewald, U. 1996. Systemic acquired resistance mediated by the ectopic expression of invertase: Possible hexose sensing in the secretory pathway. Plant Cell 8:793-803   DOI   ScienceOn
54 Midoh, N. and Iwata, M. 1996. Cloning and characterization of a probenazole-inducible gene for an intracellular pathogenesisrelated protein in rice. Plant Cell Physiol. 37:9-18   DOI   ScienceOn
55 Miya, A., Albert, P., Desaki, Y., Ichimura, K., Shirasu, K., Kawakami, N., Kaku, H. and Shibuya, N. 2007. A novel receptor kinase that mediates chitin elicitor signaling. Plant Cell Physiol. 48:S133
56 Miyake, K. 2006. Roles for accessory molecules in microbial recognition by Toll-like receptors. J. Endotoxin Res. 12:195-204   DOI   ScienceOn
57 Mylonakis, E., Casadevall, A. and Ausubel, F.M. 2007. Exploiting amoeboid and non-vertebrate animal model systems to study the virulence of human pathogenic fungi. PloS Pathogens 3:859-865
58 Mills, P. R. and Wood, R. K. S. 1984. The effects of polyacrylic acid, acetylsalicylic acid and salicylic acid on resistance of cucumber to Colletotrichum lagenarium. J. Phytopathol. 111:209-216   DOI
59 Mitchell, A. F. and Walters, D. R. 2004. Potassium phosphate induces systemic protection in barley to powdery mildew infection. Pest Manag. Sci. 60:126-134   DOI   ScienceOn
60 Gust, A. A., Biswas, R., Lenz, H. D., Rauhut, T., Ranf, S., Kemmerling, B., Gotz, F., Glawischnig, E., Lee, J., Felix, G. and Nurnberger, T. 2007. Bacteria-derived peptidoglycans constitute pathogen-associated molecular patterns triggering innate immunity in Arabidopsis. J. Biol. Chem. 282:32338-32348   DOI   ScienceOn
61 Gomez-Gomez, L. and Boller, T. 2000. FLS2: An LRR receptorlike kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol. Cell 5:1003-1011   DOI   ScienceOn
62 Gottstein, H. D. and Kuc, J. A. 1989. Induction of systemic resistance to anthracnose in cucumber by phosphates. Phytopathology 79:176-179   DOI
63 Hadwiger, L. A. and Beckman, J. M. 1980. Chitosan as a component of pea-Fusarium solani interactions. Plant Physiol. 66:205-211   DOI   ScienceOn
64 Graham, T. L., Sequeira, L. and Huang, T. S. R. 1977. Bacterial lipopolysaccharides as inducers of disease resistance in tobacco. Appl. Env. Microbiol. 34:424-432
65 Grigoriev, P. A., Schlegel, B., Kronen, M., Berg, A., Hartl, A. and Grafe, L. 2003. Differences in membrane pore formation by peptaibols. J. Pept. Sci. 9:763-768   DOI   ScienceOn
66 Hadwiger, L. 1979. Chitosan formation in Fusarium solani macroconidia on pea tissue. Plant Physiol. 63:S133   DOI   ScienceOn
67 Han, S. H., Lee, S. J., Moon, J. H., Park, K. H., Yang, K. Y., Cho, B. H., Kim, K. Y., Kim, Y. W., Lee, M. C., Anderson, A. J. and Kim, Y. C. 2006. GacS-dependent production of 2R, 3Rbutanediol by Pseudomonas chlororaphis O6 is a major determinant for eliciting systemic resistance against Erwinia carotovora but not against Pseudomonas syringae pv. tabaci in tobacco. Mol. Plant-Microbe Interact. 19:924-930   DOI   ScienceOn
68 Gaulin, E., Drame, N., Lafitte, C., Torto-Alalibo, T., Martinez, Y., Ameline-Torregrosa, C., Khatib, M., Mazarguil, H., Villalba-Mateos, F., Kamoun, S., Mazars, C., Dumas, B., Bottin, A., Esquerre-Tugaye, M. T. and Rickauer, M. 2006. Cellulose binding domains of a Phytophthora cell wall protein are novel pathogen-associated molecular patterns. Plant Cell 18:1766-1777   DOI   ScienceOn
69 Gaunt, R. E. 1995. The relationship between plant disease severity and yield. Annu. Rev. Phytopathol. 33:119-144   DOI   ScienceOn
70 Flors, V., Ton, J., van Doorn, R., Jakab, G., Garcia-Agustin, P. and Mauch-Mani, B. 2008. Interplay between JA, SA and ABA signalling during basal and induced resistance against Pseudomonas syringae and Alternaria brassicicola. Plant J. 54:81-92   DOI   ScienceOn
71 Fliegmann, J., Mithofer, A., Wanner, G. and Ebel, J. 2004. An ancient enzyme domain hidden in the putative b-glucan elicitor receptor of soybean may play an active part in the perception of pathogen-associated molecular patterns during broad host resistance. J. Biol. Chem. 279:1132-1140   DOI   ScienceOn
72 Felix, G. and Boller, T. 2003. Molecular sensing of bacteria in plants. The highly conserved RNA-binding motif RNP-1 of bacterial cold shock proteins is recognized as an elicitor signal in tobacco. J. Biol. Chem. 278:6201-6208   DOI   ScienceOn
73 Fellbrich, G., Romanski, A., Varet, A., Blume, B., Brunner, F., Engelhardt, S., Felix, G., Kemmerling, B., Krzymowska, M. and Nurnberger, T. 2002. NPP1, a Phytophthora-associated trigger of plant defense in parsley and Arabidopsis. Plant J. 32:375-390   DOI   ScienceOn
74 Ferrari, S., Galletti, R., Denoux, C., De Lorenzo, G., Ausubel, F. M. and Dewdney, J. 2007. Resistance to Botrytis cinerea induced in Arabidopsis by elicitors is independent of salicylic acid, ethylene, or jasmonate signaling but requires PHYTOALEXIN DEFICIENT3. Plant Physiol. 144:367-379   DOI   ScienceOn
75 Dong, H. and Beer, S. V. 2000. Riboflavin induces disease resistance in plants by activating a novel signal transduction pathway. Phytopathology 90:801-811   DOI   ScienceOn
76 Dong, H. S., Delaney, T. P., Bauer, D. W. and Beer, S. V. 1999. Harpin induces disease resistance in Arabidopsis through the systemic acquired resistance pathway mediated by salicylic acid and the NIM1 gene. Plant J. 20:207-215   DOI   ScienceOn
77 Epstein, E. 1994. The anomaly of silicon in plant biology. Proc. Natl. Acad. Sci. USA 91:11-17   DOI   ScienceOn
78 Faoro, F., Maffi, D., Cantu, D. and Iriti, M. 2008. Chemicalinduced resistance against powdery mildew in barley: the effects of chitosan and benzothiadiazole. Biocontrol 53:387-401   DOI   ScienceOn
79 Felix, G., Duran, J. D., Volko, S. and Boller, T. 1999. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J. 18:265-276   DOI   ScienceOn
80 Fauteux, F., Chain, F., Belzile, F., Menzies, J. G. and Belanger, R. R. 2006. The protective role of silicon in the Arabidopsispowdery mildew pathosystem. Proc. Natl. Acad. Sci. USA 103:17554-17559   DOI   ScienceOn
81 Du, H. and Klessig, D. F. 1997. Identification of a soluble, highaffinity salicylic acid-binding protein in tobacco. Plant Physiol. 113:1319-1327   DOI
82 Durner, J. and Klessig, D. F. 1995. Inhibition of ascorbate peroxidase by salicylic acid and 2,6-dichloroisonicotinic acid, two inducers of plant defense responses. Proc. Natl. Acad. Sci. USA 92:11312-11316   DOI   ScienceOn
83 Emmanouil, V. and Wood, R. K. S. 1981. Induction of resistance to Verticillium dahliae and synthesis of antifungal compounds in tomato, pepper and eggplant by injecting leaves with various substances. J. Phytopathol. 100:212-225   DOI
84 Yasuda, M., Kusajima, M., Nakajima, M., Akutsu, K., Kudo, T., Yoshida, S. and Nakashita, H. 2006. Thiadiazole carboxylic acid moiety of tiadinil, SV-03, induces systemic acquired resistance in tobacco without salicylic acid accumulation. J. Pest. Sci. 31:329-334   DOI   ScienceOn
85 Zipfel, C., Kunze, G., Chinchilla, D., Caniard, A., Jones, J. D. G., Boller, T. and Felix, G. 2006. Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacteriummediated transformation. Cell 125:749-760   DOI   ScienceOn
86 Djonovic, S., Pozo, M. J., Dangott, L. J., Howell, C. R. and Kenerley, C. M. 2006. Sm1, a proteinaceous elicitor secreted by the biocontrol fungus Trichoderma virens induces plant defense responses and systemic resistance. Mol. Plant-Microbe Interact. 19:838-853   DOI   ScienceOn
87 Doubrava, N. S., Dean, R. A. and Kuc, J. 1988. Induction of systemic resistance to anthracnose caused by Colletotrichum lagenarium in cucumber by oxalate and extracts from spinach and rhubarb leaves. Physiol. Mol. Plant Pathol. 33:69-79   DOI
88 Douliez, J. P. 2004. Cutin and suberin monomers are membrane perturbants. J. Colloid Interface Sci. 271:507-510   DOI   ScienceOn
89 Drennan, P. M., Smith, M. T., Goldsworthy, D. and Vanstaden, J. 1993. The occurrence of trehalose in the leaves of the desiccation tolerant angiosperm Myrothamnus flabellifolius Welw. J. Plant Physiol. 142:493-496   DOI   ScienceOn
90 Zipfel, C., Robatzek, S., Navarro, L., Oakeley, E. J., Jones, J. D. G., Felix, G. and Boller, T. 2004. Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428:764-767   DOI   ScienceOn
91 Yasuda, M. 2007. Regulation mechanisms of systemic acquired resistance induced by plant activators. J. Pest. Sci. 32:281-282   DOI   ScienceOn
92 Yoshida, H., Shimano, S., Mochizuki, S., Konishi, K., Koike, K. and Nakagawa, T. 1987. N-Cyanoalkylisonicotinamide derivatives. US Patent 4804762
93 Yoshida, H., Konishi, K., Koike, K., Nakagawa, T., Sekido, S. and Yamaguchi, I. 1990. Effect of N-cyanomethyl-2-chloroisonicotinamide for control of rice blast. J. Pest. Sci. 15:413-417   DOI
94 Zimmerli, L., Jakab, C., Metraux, J. P. and Mauch-Mani, B. 2000. Potentiation of pathogen-specific defense mechanisms in Arabidopsis by $\beta$-aminobutyric acid. Proc. Natl. Acad. Sci. USA 97:12920-12925   DOI   ScienceOn
95 Wei, Z. M., Laby, R. J., Zumoff, C. H., Bauer, D. W., He, S. Y., Collmer, A. and Beer, S. V. 1992. Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Science 257:85-88   DOI
96 Ward, E. R., Uknes, S. J., Williams, S. C., Dincher, S. S., Wiederhold, D. L., Alexander, D. C., Ahlgoy, P., Metraux, J. P. and Ryals, J. A. 1991. Coordinate gene activity in response to agents that induce systemic acquired resistance. Plant Cell 3:1085-1094   DOI   ScienceOn
97 Waspi, U., Blanc, D., Winkler, T., Ruedi, P. and Dudler, R. 1998. Syringolin, a novel peptide elicitor from Pseudomonas syringae pv. syringae that induces resistance to Pyricularia oryzae in rice. Mol. Plant-Microbe Interact. 11:727-733   DOI   ScienceOn
98 Zimmerli, L., Metraux, J. P. and Mauch-Mani, B. 2001. $\beta$-aminobutyric acid-induced protection of Arabidopsis against the necrotrophic fungus Botrytis cinerea. Plant Physiol. 126:517-523   DOI   ScienceOn
99 Zinati, G. M. 2005. Compost in the 20th century: A tool to control plant diseases in nursery and vegetable crops. HortTechnology 15:61-66
100 Walters, D. R. and Murray, D. C. 1992. Induction of systemic resistance to rust in Vicia faba by phosphate and EDTA: effects of calcium. Plant Pathol. 41:444-448   DOI
101 Wan, J. R., Zhang, X. C., Neece, D., Ramonell, K. M., Clough, S., Kim, S. Y., Stacey, M. G. and Stacey, G. 2008. A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis. Plant Cell 20:471-481   DOI   ScienceOn
102 Vernooij, B., Friedrich, L., Goy, P. A., Staub, T., Kessmann, H. and Ryals, J. 1995. 2,6-Dichloroisonicotinic acid induced resistance to pathogens without the accumulation of salicylic acid. Mol. Plant-Microbe Interact. 8:228-234   DOI   ScienceOn
103 Umemura, K., Tanino, S., Nagatsuka, T., Koga, J., Iwata, M., Nagashima, K. and Amemiya, Y. 2004. Cerebroside elicitor confers resistance to Fusarium disease in various plant species. Phytopathology 94:813-818   DOI   ScienceOn
104 Tsubata, K., Kuroda, K., Yamamoto, Y. and Yasokawa, N. 2006. Development of a novel plant activator for rice diseases, tiadinil. J. Pest. Sci. 31:161-162   DOI   ScienceOn
105 Trouvelot, S., Varnier, A. L., Allegre, M., Mercier, L., Baillieul, F., Arnould, C., Gianinazzi-Pearson, V., Klarzynski, O., Joubert, J. M., Pugin, A. and Daire, X. 2008. A $\beta$-1,3 glucan sulfate induces resistance in grapevine against Plasmopara viticola through priming of defense responses, including HRlike cell death. Mol. Plant-Microbe Interact. 21:232-243   DOI   ScienceOn
106 Viterbo, A., Wiest, A., Brotman, Y., Chet, I. and Kenerley, C. 2007. The 18mer peptaibols from Trichoderma virens elicit plant defence responses. Mol. Plant Pathol. 8:737-746   DOI   ScienceOn
107 Walsh, T. A., Bauer, T., Neal, R., Merlo, A. O., Schmitzer, P. R., Hicks, G. R., Honma, M., Matsumura, W., Wolff, K. and Davies, J. P. 2007. Chemical genetic identification of glutamine phosphoribosylpyrophosphate amidotransferase as the target for a novel bleaching herbicide in Arabidopsis. Plant Physiol. 144:1292-1304   DOI   ScienceOn
108 Ron, M. and Avni, A. 2004. The receptor for the fungal elicitor ethylene-inducing xylanase is a member of a resistance-like gene family in tomato. Plant Cell 16:1604-1615   DOI   ScienceOn
109 Schafer, W. 1993. The role of cutinase in fungal pathogenicity. Trends Microbiol. 1:69-71   DOI   ScienceOn
110 Sasabe, M., Naito, K., Suenaga, H., Ikeda, T., Toyodak, K., Inagaki, Y., Shiraishi, T. and Ichinose, Y. 2007. Elicitin-responsive lectin-like receptor kinase genes in BY-2 cells. DNA Seq. 18:152-159   DOI
111 Schreiber, K., Ckurshumova, W., Peek, J. and Desveaux, D. 2008. A high-throughput chemical screen for resistance to Pseudomonas syringae in Arabidopsis. Plant J. 54:522-531   DOI   ScienceOn
112 Reignault, P. and Walters, D. 2007. Topical application of inducers for disease control. In Induced Resistance for Plant Defence, ed. by D. Walters, A. Newton and G. Lyon. pp. 179-200. Blackwell, Oxford, U.K
113 Renard-Merlier, D., Randoux, B., Nowak, E., Farcy, F., Durand, R. and Reignault, P. 2007. Iodus 40, salicyclic acid, heptanoyl salicylic acid and trehalose exhibit different efficacies and defence targets during a wheat/powdery mildew interaction. Phytochem. 68:1156-1164   DOI   ScienceOn
114 Robert-Seilaniantz, A., Navarro, L., Bari, R. and Jones, J. D. 2007. Pathological hormone imbalances. Curr. Opin. Plant Biol. 10:372-379   DOI   ScienceOn
115 Rao, A. V. R., Ravichandran, K., David, S. B. and Ranade, S. 1985. Menadione sodium bisulfite - A promising plant growth regulator. Plant Growth Regul. 3:111-118   DOI
116 Reignault, P., Cogan, A., Muchembled, J., Sahraoui, A. L. H., Durand, R. and Sancholle, M. 2001. Trehalose induces resistance to powdery mildew in wheat. New Phytol. 149:519-529   DOI   ScienceOn
117 Aver'yanov, A. A., Lapikova, V. P., Nikolaev, O. N. and Stepanov, A. I. 2000. Active oxygen-associated control of rice blast disease by riboflavin and roseoflavin. Biochemistry-Moscow 65:1292-1298
118 Schweizer, P., Gees, R. and Mosinger, E. 1993. Effect of jasmonic acid on the interaction of barley (Hordeum vulgare L) with the powdery mildew Erysiphe graminis f.sp. hordei. Plant Physiol. 102:503-511   DOI
119 Schweizer, P., Jeanguenat, A., Whitacre, D., Metraux, J. P. and Mosinger, E. 1996. Induction of resistance in barley against Erysiphe graminis f.sp. hordei by free cutin monomers. Physiol. Mol. Plant Pathol. 49:103-120   DOI   ScienceOn
120 Aballay, A. and Ausubel, F. M. 2002. Caenorhabditis elegans as a host for the study of host-pathogen interactions. Curr. Opin. Microbiol. 5:97-101   DOI   ScienceOn
121 Applewhite, P. B., Ksawhney, R. and Galston, A. W. 1994. Isatin as an auxin source favoring floral and vegetative shoot regeneration from calli produced by thin-layer explants of tomato pedicel. Plant Growth Regul. 15:17-21   DOI   ScienceOn
122 Asselin, A., Grenier, J. and Cote, F. 1985. Light-influenced extracellular accumulation of b (pathogenesis-related) proteins in Nicotiana green tissue induced by various chemicals or prolonged floating on water. Can. J. Bot. 63:1276-1283   DOI
123 Ahn, I. P., Kim, S., Lee, Y. H. and Suh, S. C. 2007. Vitamin $B_1$ induced priming is dependent on hydrogen peroxide and the NPR1 gene in Arabidopsis. Plant Physiol. 143:838-848   DOI   ScienceOn
124 Laquitaine, L., Gomes, E., Francois, J., Marchive, C., Pascal, S., Hamdi, S., Atanassova, R., Delrot, S. and Coutos-Thevenot, P. 2006. Molecular basis of ergosterol-induced protection of grape against Botrytis cinerea: Induction of type I LTP promoter activity, WRKY, and stilbene synthase gene expression. Mol. Plant-Microbe Interact. 19:1103-1112   DOI   ScienceOn
125 Kauss, H., Fauth, M., Merten, A. and Jeblick, W. 1999. Cucumber hypocotyls respond to cutin monomers via both an inducible and a constitutive $H_2O_2$-generating system. Plant Physiol. 120:1175-1182   DOI   ScienceOn
126 Kazan, K. and Schenk, P. M. 2007. Genomics in induced resistance. In Induced Resistance for Plant Defence, ed. by D. Walters, A. Newton and G. Lyon. pp. 31-64. Blackwell, Oxford, U.K
127 Kim, S. T., Kim, S. G., Kang, Y. H., Wang, Y., Kim, J. Y., Yi, N., Kim, J. K., Rakwal, R., Koh, H. J. and Kang, K. Y. 2008a. Proteomics analysis of rice lesion mimic mutant (spl1) reveals tightly localized probenazole-induced protein (PBZ1) in cells undergoing programmed cell death. J. Proteome Res. 7:1750-1760   DOI   ScienceOn
128 Lawton, K. A., Friedrich, L., Hunt, M., Weymann, K., Delaney, T., Kessmann, H., Staub, T. and Ryals, J. 1996. Benzothiadiazole induces disease resistance in Arabidopsis by activation of the systemic acquired resistance signal transduction pathway. Plant J. 10:71-82   DOI   ScienceOn
129 Kunze, G., Zipfel, C., Robatzek, S., Niehaus, K., Boller, T. and Felix, G. 2004. The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. Plant Cell 16:3496-3507   DOI   ScienceOn
130 Kusano, T., Berberich, T., Tateda, C. and Takahashi, Y. 2008. Polyamines: essential factors for growth and survival. Planta 228:367-381   DOI   ScienceOn
131 Kover, P. X. and Schaal, B. A. 2002. Genetic variation for disease resistance and tolerance among Arabidopsis thaliana accessions. Proc. Natl. Acad. Sci. USA 99:11270-11274   DOI   ScienceOn
132 Kuc, J. E., Williams, B. and Shay, J. R. 1957. Increase of resistance to apple scab following injection of host with phenylthiourea and D-phenylalanine. Phytopathology 47:21-22
133 Koga, J., Yamauchi, T., Shimura, M., Ogawa, N., Oshima, K., Umemura, K., Kikuchi, M. and Ogasawara, N. 1998. Cerebrosides A and C, sphingolipid elicitors of hypersensitive cell death and phytoalexin accumulation in rice plants. J. Biol. Chem. 273:31985-31991   DOI   ScienceOn
134 Koga, J., Kubota, H., Gomi, S., Umemura, K., Ohnishi, M. and Kono, T. 2006. Cholic acid, a bile acid elicitor of hypersensitive cell death, pathogenesis-related protein synthesis, and phytoalexin accumulation in rice. Plant Physiol. 140:1475-1483   DOI   ScienceOn
135 Kim, T. H., Park, J. H., Kim, M. C. and Cho, S. H. 2008b. Cutin monomer induces expression of the rice OsLTP5 lipid transfer protein gene. J. Plant Physiol. 165:345-349   DOI   ScienceOn
136 Kim, Y. H., Yeo, W. H., Kim, Y. S., Chae, S. Y. and Kim, K. S. 2000. Antiviral activity of antibiotic peptaibols, chrysospemins B and D, produced by Apiocrea sp 14T against TMV infection. J. Microbiol. Biotech. 10:522-528
137 Kim, Y. K. and Chang, Y. T. 2007. Tagged library approach facilitates forward chemical genetics. Mol. Biosyst. 3:392-397   DOI   ScienceOn
138 Klarzynski, O., Plesse, B., Joubert, J. M., Yvin, J. C., Kopp, M., Kloareg, B. and Fritig, B. 2000. Linear $\beta$-1,3 glucans are elicitors of defense responses in tobacco. Plant Physiol. 124:1027-1037   DOI   ScienceOn
139 Li, Y. M., Zhang, Z. K., Jia, Y. T., Shen, Y. M., He, H. M., Fang, R. X., Chen, X. Y. and Hao, X. J. 2008. 3-acetonyl-3-hydroxyoxindole: a new inducer of systemic acquired resistance in plants. Plant Biotech. J. 6:301-308   DOI   ScienceOn
140 Hahn, M. G., Darvill, A. G. and Albersheim, P. 1981. Host-pathogen interactions XIX. The endogenous elicitor, a fragment of a plant cell wall polysaccharide that elicits phytoalexin accumulation in soybeans. Plant Physiol. 68:1161-1169   DOI   ScienceOn
141 Malamy, J., SanchezCasas, P., Hennig, J., Guo, A. L. and Klessig, D. F. 1996. Dissection of the salicylic acid signaling pathway in tobacco. Mol. Plant-Microbe Interact. 9:474-482   DOI   ScienceOn
142 Stockwell, B. R. 2000. Chemical genetics: Ligand-based discovery of gene function. Nat. Rev. Genet. 1:116-125   DOI   ScienceOn
143 Szekeres, A., Leitgeb, B., Kredics, L., Antal, Z., Hatvani, L., Manczinger, L. and Vagvolgyi, C. 2005. Peptaibols and related peptaibiotics of Trichoderma. A review. Acta Microbiol. Immunol. Hung. 52:137-168   DOI   ScienceOn
144 Conrath, U., Beckers, G. J. M., Flors, V., Garcia-Agustin, P., Jakab, G., Mauch, F., Newman, M. A., Pieterse, C. M. J., Poinssot, B., Pozo, M. J., Pugin, A., Schaffrath, U., Ton, J., Wendehenne, D., Zimmerli, L. and Mauch-Mani, B. 2006. Priming: Getting ready for battle. Mol. Plant-Microbe Interact. 19:1062-1071   DOI   ScienceOn
145 Baurin, N., Baker, R., Richardson, C., Chen, I., Foloppe, N., Potter, A., Jordan, A., Roughley, S., Parratt, M., Greaney, P., Morley, D. and Hubbard, R. E. 2004. Drug-like annotation and duplicate analysis of a 23-supplier chemical database totalling 2.7 million compounds. J. Chem. Inf. Comp. Sci. 44:643-651   DOI   ScienceOn
146 Benhamou, N., Belanger, R. R., Rey, P. and Tirilly, Y. 2001. Oligandrin, the elicitin-like protein produced by the mycoparasite Pythium oligandrum, induces systemic resistance to Fusarium crown and root rot in tomato plants. Plant Physiol. Bioch. 39:681-696   DOI   ScienceOn
147 Conrath, U., Chen, Z. X., Ricigliano, J. R. and Klessig, D. F. 1995. Two inducers of plant defense responses, 2,6-dichloroisonicotinic acid and salicylic acid, inhibit catalase activity in tobacco. Proc. Natl. Acad. Sci. USA 92:7143-7147   DOI   ScienceOn
148 Chen, Z. X., Malamy, J., Henning, J., Conrath, U., Sanchezcasas, P., Silva, H., Ricigliano, J. and Klessig, D. F. 1995. Induction, modification, and transduction of the salicylic acid signal in plant defense responses. Proc. Natl. Acad. Sci. USA 92:4134-4137   DOI   ScienceOn
149 Bowling, S. A., Guo, A., Cao, H., Gordon, A. S., Klessig, D. F. and Dong, X. I. 1994. A mutation in Arabidopsis that leads to constitutive expression of systemic acquired resistance. Plant Cell 6:1845-1857   DOI   ScienceOn
150 Breger, J., Fuchs, B. B., Aperis, G., Moy, T. I., Ausubel, F. M. and Mylonakis, E. 2007. Antifungal chemical compounds identified using a C. elegans pathogenicity assay. PloS Pathogens 3:168-178   DOI   ScienceOn
151 Groll, M., Schellenberg, B., Bachmann, A. S., Archer, C. R., Huber, R., Powell, T. K., Lindow, S., Kaiser, M. and Dudler, R. 2008. A plant pathogen virulence factor inhibits the eukaryotic proteasome by a novel mechanism. Nature 452:755-U757   DOI   ScienceOn
152 Forouhar, F., Yang, Y., Kumar, D., Chen, Y., Fridman, E., Park, S. W., Chiang, Y., Acton, T. B., Montelione, G. T., Pichersky, E., Klessig, D. F. and Tong, L. 2005. Structural and biochemical studies identify tobacco SABP2 as a methyl salicylate esterase and implicate it in plant innate immunity. Proc. Natl. Acad. Sci. USA 102:1773-1778   DOI   ScienceOn
153 Friedrich, L., Lawton, K., Ruess, W., Masner, P., Specker, N., Rella, M. G., Meier, B., Dincher, S., Staub, T., Uknes, S., Metraux, J. P., Kessmann, H. and Ryals, J. 1996. A benzothiadiazole derivative induces systemic acquired resistance in tobacco. Plant J. 10:61-70   DOI   ScienceOn
154 Gaffney, T., Friedrich, L., Vernooij, B., Negrotto, D., Nye, G., Uknes, S., Ward, E., Kessmann, H. and Ryals, J. 1993. Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261:754-756   DOI   ScienceOn
155 Flors, V., Miralles, C., Cerezo, M., Gonzalez-Bosch, C. and Garcia-Agustin, P. 2001. Effect of a novel chemical mixture on senescence processes and plant-fungus interaction in solanaceae plants. J. Agric. Food Chem. 49:2569-2575   DOI   ScienceOn
156 Flors, V., Miralles, C., Gonzalez-Bosch, C., Carda, M. and Garcia-Agustin, P. 2003a. Three novel synthetic amides of adipic acid protect Capsicum annuum plants against the necrotrophic pathogen Alternaria solani. Physiol. Mol. Plant Pathol. 63:151-158   DOI   ScienceOn
157 Flors, V., Miralles, M. C., Gonzalez-Bosch, C., Carda, M. and Garcia-Agustin, P. 2003b. Induction of protection against the necrotrophic pathogens Phytophthora citrophthora and Alternaria solani in Lycopersicon esculentum Mill. by a novel synthetic glycoside combined with amines. Planta 216:929-938
158 Inohara, N. and Nunez, G. 2003. NODs: intracellular proteins involved in inflammation and apoptosis. Nat. Rev. Immunol. 3:371-382   DOI   ScienceOn
159 Parsons, A. B., Brost, R. L., Ding, H. M., Li, Z. J., Zhang, C. Y., Sheikh, B., Brown, G. W., Kane, P. M., Hughes, T. R. and Boone, C. 2004. Integration of chemical-genetic and genetic interaction data links bioactive compounds to cellular target pathways. Nat. Biotech. 22:62-69   DOI   ScienceOn
160 Iavicoli, A., Boutet, E., Buchala, A. and Metraux, J. P. 2003. Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Mol. Plant-Microbe Interact. 16:851-858   DOI   ScienceOn
161 Osman, H., Vauthrin, S., Mikes, V., Milat, M. L., Panabieres, F., Marais, A., Brunie, S., Maume, B., Ponchet, M. and Blein, J. P. 2001. Mediation of elicitin activity on tobacco is assumed by elicitin-sterol complexes. Mol. Biol. Cell 12:2825-2834   DOI
162 Oh, H. S. and Lee, Y. H. 2000. A target-site-specific screening system for antifungal compounds on appressorium formation in Magnaporthe grisea. Phytopathology 90:1162-1168   DOI   ScienceOn
163 Oldenburg, J., Marinova, M., Muller-Reible, C. and Watzka, M. 2008. The vitamin K cycle. Vitam. Horm. 78:35-62
164 Ongena, M., Jourdan, E., Schafer, M., Kech, C., Budzikiewicz, H., Luxen, A. and Thonart, P. 2005. Isolation of an N-alkylated benzylamine derivative from Pseudomonas putida BTP1 as elicitor of induced systemic resistance in bean. Mol. Plant-Microbe Interact. 18:562-569   DOI   ScienceOn
165 Newman, M. A., Dow, J. M., Molinaro, A. and Parrilli, M. 2007. Priming, induction and modulation of plant defence responses by bacterial lipopolysaccharides. J. Endotoxin Res. 13:69-84   DOI   ScienceOn
166 Ortega-Ortiz, H., Benavides-Mendoza, A., Flores-Olivas, A. and Ledezma-Perez, A. 2003. Use of the interpolyelectrolyte complexes of poly(acrylic acid)-chitosan as inductors of tolerance against pathogenic fungi in tomato (Lycopersicon esculentum mill. var. floradade). Macromol. Biosci. 3:566-570   DOI   ScienceOn
167 Nakashita, H., Yasuda, M., Nishioka, M., Hasegawa, S., Arai, Y., Uramoto, M., Yoshida, S. and Yamaguchi, I. 2002. Chloroisonicotinamide derivative induces a broad range of disease resistance in rice and tobacco. Plant Cell Physiol. 43:823-831   DOI   ScienceOn
168 Nakashita, H., Yasuda, M., Nitta, T., Asami, T., Fujioka, S., Arai, Y., Sekimata, K., Takatsuto, S., Yamaguchi, I. and Yoshida, S. 2003a. Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. Plant J. 33:887-898   DOI   ScienceOn
169 Orober, M., Siegrist, J. and Buchenauer, H. 2002. Mechanisms of phosphate-induced disease resistance in cucumber. Eur. J. Plant Pathol. 108:345-353   DOI   ScienceOn
170 Mithofer, A., Lottspeich, F. and Ebel, J. 1996. One-step purification of the $\beta$-glucan elicitor-binding protein from soybean (Glycine max L) roots and characterization of an anti-peptide antiserum. FEBS Lett. 381:203-207   DOI   ScienceOn
171 Mittra, B., Ghosh, P., Henry, S. L., Mishra, J., Das, T. K., Ghosh, S., Babu, C. R. and Mohanty, P. 2004. Novel mode of resistance to Fusarium infection by a mild dose pre-exposure of cadmium in wheat. Plant Physiol. Biochem. 42:781-787   DOI   ScienceOn
172 Menard, R., Alban, S., de Ruffray, P., Jamois, F., Franz, G., Fritig, B., Yvin, J. C. and Kauffmann, S. 2004. $\beta$-1,3 glucan sulfate, but not $\beta$-1,3 glucan, induces the salicylic acid signaling pathway in tobacco and Arabidopsis. Plant Cell 16:3020-3032   DOI   ScienceOn
173 Vargas, W. A., Djonovic, S., Sukno, S. A. and Kenerley, C. M. 2008. Dimerization controls the activity of fungal elicitors that trigger systemic resistance in plants. J. Biol. Chem. 283:19804-19815   DOI   ScienceOn
174 Thomma, B. P. H. J., Eggermont, K., Penninckx, I. A. M. A., Mauch-Mani, B., Vogelsang, R., Cammue, B. P. A. and Broekaert, W. F. 1998. Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc. Natl. Acad. Sci. USA 95:15107-15111   DOI   ScienceOn
175 Ton, J. and Mauch-Mani, B. 2004. b-aminobutyric acid-induced resistance against necrotrophic pathogens is based on ABAdependent priming for callose. Plant J. 38:119-130   DOI   ScienceOn
176 van Andel, O. M. 1966. Amino acids and plant diseases. Annu. Rev. Phytopathol. 14:349-368
177 Diaz, J., ten Have, A. and van Kan, J. A. L. 2002. The role of ethylene and wound signaling in resistance of tomato to Botrytis cinerea. Plant Physiol. 129:1341-1351   DOI   ScienceOn
178 Diogo, R. V. C. and Wydra, K. 2007. Silicon-induced basal resistance in tomato against Ralstonia solanacearum is related to modification of pectic cell wall polysaccharide structure. Physiol. Mol. Plant Pathol. 70:120-129   DOI   ScienceOn
179 Chisholm, S. T., Coaker, G., Day, B. and Staskawicz, B. J. 2006. Host-microbe interactions: Shaping the evolution of the plant immune response. Cell 124:803-814   DOI   ScienceOn
180 Dumas, E., Gianinazzi, S. and Nicoud, S. 1985. A genetically controlled polyacrylic acid Induced resistance in Nicotiana species. Antiviral Res. 5:355-362   DOI   ScienceOn
181 Geissler, A. E. and Katekar, G. F. 1983. Effect of fungicides on stages of the life cycle of Phytophthora cinnamomi. Pest. Sci. 14:501-507   DOI   ScienceOn
182 Bonnet, P., Bourdon, E., Ponchet, M., Blein, J. P. and Ricci, P. 1996. Acquired resistance triggered by elicitins in tobacco and other plants. Eur. J. Plant Pathol. 102:181-192   DOI
183 Brunner, F., Rosahl, S., Lee, J., Rudd, J. J., Geiler, C., Kauppinen, S., Rasmussen, G., Scheel, D. and Nurnberger, T. 2002. Pep-13, a plant defense-inducing pathogen-associated pattern from Phytophthora transglutaminases. EMBO J. 21:6681-6688   DOI   ScienceOn
184 Buhot, N., Douliez, J. P., Jacquemard, A., Marion, D., Tran, V., Maume, B. F., Milat, M. L., Ponchet, M., Mikes, V., Kader, J. C. and Blein, J. P. 2001. A lipid transfer protein binds to a receptor involved in the control of plant defence responses. FEBS Lett. 509:27-30   DOI   ScienceOn
185 Buhot, N., Gomes, E., Milat, M. L., Ponchet, M., Marion, D., Lequeu, J., Delrot, S., Coutos-Thevenot, P. and Blein, J. P. 2004. Modulation of the biological activity of a tobacco LTP1 by lipid complexation. Mol. Biol. Cell 15:5047-5052   DOI   ScienceOn
186 Borges, A. A., Cools, H. J. and Lucas, J. A. 2003. Menadione sodium bisulphite: a novel plant defence activator which enhances local and systemic resistance to infection by Leptosphaeria maculans in oilseed rape. Plant Pathol. 52:429-436   DOI   ScienceOn
187 Aziz, A., Heyraud, A. and Lambert, B. 2004. Oligogalacturonide signal transduction, induction of defense-related responses and protection of grapevine against Botrytis cinerea. Planta 218:767-774   DOI   ScienceOn
188 Baillieul, F., de Ruffray, P. and Kauffmann, S. 2003. Molecular cloning and biological activity of $\alpha$-,$\beta$-, and $\gamma$-megaspermin, three elicitins secreted by Phytophthora megasperma H20. Plant Physiol. 131:155-166   DOI   ScienceOn
189 Zhao, Y., Chow, T. F., Puckrin, R. S., Alfred, S. E., Korir, A. K., Larive, C. K. and Cutler, S. R. 2007. Chemical genetic interrogation of natural variation uncovers a molecule that is glycoactivated. Nat. Chem. Biol. 3:716-721   DOI   ScienceOn
190 Yoshioka, K., Nakashita, H., Klessig, D. F. and Yamaguchi, I. 2001. Probenazole induces systemic acquired resistance in Arabidopsis with a novel type of action. Plant J. 25:149-157   DOI   ScienceOn
191 Zheng, X. F. S., Chan, T. F. and Zhou, H. H. 2004. Genetic and genomic approaches to identify and study the targets of bioactive small molecules. Chem. Biol. 11:609-618   DOI   ScienceOn
192 Yasuda, M., Nishioka, M., Nakashita, H., Yamaguchi, I. and Yoshida, S. 2003. Pyrazolecarboxylic acid derivative induces systemic acquired resistance in tobacco. Biosci. Biotech. Bioch. 67:2614-2620   DOI   ScienceOn
193 Yasuda, M., Nakashita, H. and Yoshida, S. 2004. Tiadinil, a novel class of activator of systemic acquired resistance, induces defense gene expression and disease resistance in tobacco. J. Pest. Sci. 29:46-49   DOI   ScienceOn
194 Waspi, U., Schweizer, P. and Dudler, R. 2001. Syringolin reprograms wheat to undergo hypersensitive cell death in a compatible interaction with powdery mildew. Plant Cell 13:153-161   DOI   ScienceOn
195 Watanabe, T., Igarashi, H., Matsumoto, K., Seki, S., Mase, S. and Sekizawa, Y. 1977. Studies on rice blast controlling agent of benzisothiazole analogs. 1. Characteristics of probenazole (Oryzemate) for control of rice blast. J. Pest. Sci. 2:291-296   DOI
196 Waugh, R., Leader, D. J., McCallum, N. and Caldwell, D. 2006. Harvesting the potential of induced biological diversity. Trends Plant Sci. 11:71-79   DOI   ScienceOn
197 Wendehenne, D., Durner, J., Chen, Z. X. and Klessig, D. F. 1998. Benzothiadiazole, an inducer of plant defenses, inhibits catalase and ascorbate peroxidase. Phytochem. 47:651-657   DOI   ScienceOn
198 Wang, D., Pajerowska-Mukhtar, K., Culler, A. H. and Dong, X. N. 2007. Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Curr. Biol. 17:1784-1790   DOI   ScienceOn
199 Walters, D. 2003. Resistance to plant pathogens: possible roles for free polyamines and polyamine catabolism. New Phytol. 159:109-115   DOI   ScienceOn
200 Walters, D., Walsh, D., Newton, A. and Lyon, G. 2005. Induced resistance for plant disease control: Maximizing the efficacy of resistance elicitors. Phytopathology 95:1368-1373   DOI   ScienceOn
201 White, R. F. 1979. Acetylsalicylic acid (aspirin) induces resistance to tobacco mosaic virus in tobacco. Virology 99:410-412   DOI   ScienceOn
202 White, R. F., Dumas, E., Shaw, P. and Antoniw, J. F. 1986. The chemical induction of PR (b) proteins and resistance to TMV Infection in tobacco. Antiviral Res. 6:177-185   DOI   ScienceOn
203 Yamakawa, H., Kamada, H., Satoh, M. and Ohashi, Y. 1998. Spermine is a salicylate-independent endogenous inducer for both tobacco acidic pathogenesis-related proteins and resistance against tobacco mosaic virus infection. Plant Physiol. 118:1213-1222   DOI   ScienceOn
204 Uknes, S., Mauchmani, B., Moyer, M., Potter, S., Williams, S., Dincher, S., Chandler, D., Slusarenko, A., Ward, E. and Ryals, J. 1992. Acquired resistance in Arabidopsis. Plant Cell 4:645-656   DOI   ScienceOn
205 Umemoto, N., Kakitani, M., Iwamatsu, A., Yoshikawa, M., Yamaoka, N. and Ishida, I. 1997. The structure and function of a soybean b-glucan-elicitor-binding protein. Proc. Natl. Acad. Sci. USA 94:1029-1034   DOI
206 Torrigiani, P., Rabiti, A. L., Bortolotti, C., Betti, L., Marani, F., Canova, A. and Bagni, N. 1997. Polyamine synthesis and accumulation in the hypersensitive response to TMV in Nicotiana tabacum. New Phytol. 135:467-473   DOI   ScienceOn
207 Ryals, J. A., Neuenschwander, U. H., Willits, M. G., Molina, A., Steiner, H. Y. and Hunt, M. D. 1996. Systemic acquired resistance. Plant Cell 8:1809-1819   DOI   ScienceOn
208 Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Kloepper, J. W. and Pare, P. W. 2004. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol. 134:1017-1026   DOI   ScienceOn
209 Ton, J., Jakab, G., Toquin, V., Flors, V., Iavicoli, A., Maeder, M. N., Metraux, J. P. and Mauch-Mani, B. 2005. Dissecting the $\beta$-aminobutyric acid-induced priming phenomenon in Arabidopsis. Plant Cell 17:987-999   DOI   ScienceOn
210 Trotel-Aziz, P., Couderchet, M., Vernet, G. and Aziz, A. 2006. Chitosan stimulates defense reactions in grapevine leaves and inhibits development of Botrytis cinerea. Eur. J. Plant Pathol. 114:405-413   DOI   ScienceOn
211 van der Merwe, J. A. and Dubery, I. A. 2006. Benzothiadiazole inhibits mitochondrial NADH : ubiquinone oxidoreductase in tobacco. J. Plant Physiol. 163:877-882   DOI   ScienceOn
212 van Hulten, M., Pelser, M., van Loon, L. C., Pieterse, C. M. J. and Ton, J. 2006. Costs and benefits of priming for defense in Arabidopsis. Proc. Natl. Acad. Sci. USA 103:5602-5607   DOI   ScienceOn
213 van Loon, L. C., Bakker, P. A. H. M. and Pieterse, C. M. J. 1998. Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathol. 36:453-483   DOI   ScienceOn
214 Sinha, A. K. and Giri, D. N. 1979. Approach to control brown spot of rice with chemicals known as phytoalexin inducers. Curr. Sci. 48:782-784
215 Qutob, D., Kemmerling, B., Brunner, F., Kufner, I., Engelhardt, S., Gust, A. A., Luberacki, B., Seitz, H. U., Stahl, D., Rauhut, T., Glawischnig, E., Schween, G., Lacombe, B., Watanabe, N., Lam, E., Schlichting, R., Scheel, D., Nau, K., Dodt, G., Hubert, D., Gijzen, M. and Nurnberger, T. 2006. Phytotoxicity and innate immune responses induced by Nep1-like proteins. Plant Cell 18:3721-3744   DOI   ScienceOn
216 Shimizu, T., Jikumaru, Y., Okada, A., Okada, K., Koga, J., Umemura, K., Minami, E., Shibuya, N., Hasegawa, M., Kodama, O., Nojiri, H. and Yamane, H. 2008. Effects of a bile acid elicitor, cholic acid, on the biosynthesis of diterpenoid phytoalexins in suspension-cultured rice cells. Phytochem. 69:973-981   DOI   ScienceOn
217 Singh, R. P., Wood, F. A. and Hodgson, W. A. 1970. Nature of virus inhibition by a polysaccharide from Phytophthora infestans. Phytopathology 60:1566-1569   DOI
218 Serrano, M., Robatzek, S., Torres, M., Kombrink, E., Somssich, I. E., Robinson, M. and Schulze-Lefert, P. 2007. Chemical interference of pathogen-associated molecular pattern-triggered immune responses in Arabidopsis reveals a potential role for fatty-acid synthase type II complex-derived lipid signals. J. Biol. Chem. 282:6803-6811   DOI   ScienceOn
219 Shibuya, N. and Minami, E. 2001. Oligosaccharide signalling for defence responses in plant. Physiol. Mol. Plant Pathol. 59:223-233   DOI   ScienceOn
220 Shikazono, N., Suzuki, C., Kitamura, S., Watanabe, H., Tano, S. and Tanaka, A. 2005. Analysis of mutations induced by carbon ions in Arabidopsis thaliana. J. Exp. Bot. 56:587-596   DOI   ScienceOn
221 Schurter, R., Kunz, W. and Nyfeler, R. 1987. Process and a composition for immunizing plants against diseases. US Patent 4931581
222 Gross, A., Kapp, D., Nielsen, T. and Niehaus, K. 2005. Endocytosis of Xanthomonas campestris pathovar campestris lipopolysaccharides in non-host plant cells of Nicotiana tabacum. New Phytol. 165:215-226   DOI   ScienceOn
223 Slovakova, L., Liskova, D., Capek, P., Kubackova, M., Kakoniova, D. and Karacsonyi, S. 2000. Defence responses against TNV infection induced by galactoglucomannan-derived oligosaccharides in cucumber cells. Eur. J. Plant Pathol. 106:543-553   DOI   ScienceOn
224 Spoel, S. H. and Dong, X. N. 2008. Making sense of hormone crosstalk during plant immune responses. Cell Host Microbe 3:348-351   DOI   ScienceOn
225 Villaba-Mateos, F., Rickauer, M. and EsquerreTugaye, M. T. 1997. Cloning and characterization of a cDNA encoding an elicitor of Phytophthora parasitica var. nicotianae that shows cellulose-binding and lectin-like activities. Mol. Plant-Microbe Interact. 10:1045-1053   DOI   ScienceOn
226 Ghoshroy, S., Freedman, K., Lartey, R. and Citovsky, V. 1998. Inhibition of plant viral systemic infection by non-toxic concentrations of cadmium. Plant J. 13:591-602   DOI   ScienceOn
227 Giaever, G., Shoemaker, D. D., Jones, T. W., Liang, H., Winzeler, E. A., Astromoff, A. and Davis, R. W. 1999. Genomic profiling of drug sensitivities via induced haploinsufficiency. Nat. Genet. 21:278-283   DOI   ScienceOn
228 Gianinazzi, S. and Kassanis, B. 1974. Virus resistance induced in plants by polyacrylic acid. J. Gen. Virol. 23:1-9   DOI
229 Glazebrook, J. 2005. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol. 43:205-227   DOI   ScienceOn
230 Daxberger, A., Nemak, A., Mithofer, A., Fliegmann, J., Ligterink, W., Hirt, H. and Ebel, J. 2007. Activation of members of a MAPK module in b-glucan elicitor-mediated non-host resistance of soybean. Planta 225:1559-1571   DOI   ScienceOn
231 Cipollini, D. F. 2002. Does competition magnify the fitness costs of induced responses in Arabidopsis thaliana? A manipulative approach. Oecologia 131:514-520   DOI   ScienceOn
232 Citovsky, V., Ghoshroy, S., Tsui, F. and Klessig, D. 1998. Nontoxic concentrations of cadmium inhibit systemic movement of turnip vein clearing virus by a salicylic acid-independent mechanism. Plant J. 16:13-20   DOI   ScienceOn
233 Cohen, Y., Gisi, U. and Mosinger, E. 1991. Systemic resistance of potato plants against Phytophthora infestans induced by unsaturated fatty acids. Physiol. Mol. Plant Pathol. 38:255-263   DOI
234 Aziz, A., Gauthier, A., Bezler, A., Poinssot, B., Joubert, J. M., Pugin, A., Heyraud, A. and Baillieul, F. 2007. Elicitor and resistance-inducing activities of $\beta$-1,4 cellodextrins in grapevine, comparison with $\beta$-1,3 glucans and $\alpha$-1,4 oligogalacturonides. J. Exp. Bot. 58:1463-1472   DOI   ScienceOn
235 Bais, H. P., Vepachedu, R., Gilroy, S., Callaway, R. M. and Vivanco, J. M. 2003. Allelopathy and exotic plant invasion: From molecules and genes to species interactions. Science 301:1377-1380   DOI   ScienceOn
236 Bantignies, B., Seguin, J., Muzac, I., Dedaldechamp, F., Gulick, P. and Ibrahim, R. 2000. Direct evidence for ribonucleolytic activity of a PR-10-like protein from white lupin roots. Plant Mol. Biol. 42:871-881   DOI   ScienceOn
237 Barber, M. S., Bertram, R. E. and Ride, J. P. 1989. Chitin oligosaccharides elicit lignification in wounded wheat leaves. Physiol. Mol. Plant Pathol. 34:3-12   DOI
238 Calabrese, E. J. and Baldwin, L. A. 2003. Hormesis: The doseresponse revolution. Annu. Rev. Pharmacol. Toxicol. 43:175-197   DOI   ScienceOn
239 Capasso, R., Cristinzio, G., Evidente, A., Visca, C., Ferranti, P., Blanco, F. D. and Parente, A. 1999. Elicitin 172 from an isolate of Phytophthora nicotianae pathogenic to tomato. Phy tochem. 50:703-709