• 제목/요약/키워드: Endocrine Disruptor

검색결과 137건 처리시간 0.023초

바이오패닝에 의한 Bisphenol A 친화성 펩타이드 서열의 탐색 (Screening of Peptide Sequences with Affinity to Bisphenol A by Biopanning)

  • 유익근;최우석
    • 미생물학회지
    • /
    • 제49권2호
    • /
    • pp.211-214
    • /
    • 2013
  • 비스페놀 A (BPA)는 내분비계 장애물질의 하나로서 인간에게 큰 위협이 되고 있는 물질이다. 따라서 BPA의 분석 및 제거를 위해 BPA에 대해 선택적 친화성을 보이는 특정 리간드 탐색이 요구되고 있다. 본 연구에서는 초음파 처리를 동반한 바이오패닝 기법을 이용하여 파지 표면 디스플레이 라이브러리로부터 BPA에 친화성이 높은 펩타이드 서열을 탐색하였다. BPA 입자에 대한 6라운드의 positive 스크리닝과 에펜도르프 튜브 표면 재질에 대한 negative 스크리닝 과정을 실시하였고, 이를 통해 BPA에 선택적 친화성이 높은 CysLysSerLeuGluAsnSerTyrCys (CKSLENSYC) 서열을 스크리닝하였다. 또한 확보된 서열의 선택적 친화성을 검증하기 위해 BPA와 구조가 유사한 비스페놀 F (BPF), 비스페놀 S (BPS)에 대해서 교차 친화성이 있는지 평가하였고, 앞에서 선택된 서열이 BPS, BPF에 비하여 상대적으로 BPA에 대한 친화성이 높다는 것을 확인하였다.

Comparative transcriptome analysis of the protective effects of Korean Red Ginseng against the influence of bisphenol A in the liver and uterus of ovariectomized mice

  • Lee, Jeonggeun;Park, Joonwoo;Lee, Yong Yook;Lee, YoungJoo
    • Journal of Ginseng Research
    • /
    • 제44권3호
    • /
    • pp.519-526
    • /
    • 2020
  • Background: Bisphenol A (BPA), known as an endocrine disruptor, is widely used in the world. BPA is reported to cause inflammation-related diseases. Korean Red Ginseng (KRG) has been used safely in human for a long time for the treatment of diverse diseases. KRG has been reported of its mitigating effect on menopausal symptoms and suppress adipose inflammation. Here, we investigate the protective effect of orally administered KRG on the impacts of BPA in the liver and uterus of menopausal mice model. Methods: The transcriptome analysis for the effects of BPA on mice liver was evaluated by Gene Expression Omnibus (GEO) database-based data (GSE26728). In vivo assay to evaluate the protective effect of KRG on BPA impact in ovariectomized (OVX) mice were designed and analyzed by RNA sequencing. Results: We first demonstrated that BPA induced 12 kinds of gene set in the liver of normal mice. The administration of BPA and KRG did not change body, liver, and uterine weight in OVX mice. KRG downregulated BPA-induced inflammatory response and chemotaxis-related gene expression. Several gene set enrichment analysis (GSEA)-derived inflammatory response genes increased by BPA were inhibited by KRG in OVX mice. Conclusion: Our data suggest that BPA has commonly influenced inflammatory response effects on both normal and OVX mice. KRG protects against BPA impact of inflammatory response and chemotaxis in OVX mouse models. Our comparative analysis will provide new insight into the efficacy of KRG on endocrine disrupting chemicals and OVX mouse.

Nonylphenol 분해 미생물 컨소시엄 균주 개발 (Isolation of a Nonylphenol-degrading Microbial Consortium)

  • 송원;임근식;유대웅;박미은;정은탁;김동명;정용현;김영목
    • 한국수산과학회지
    • /
    • 제44권4호
    • /
    • pp.325-331
    • /
    • 2011
  • Nonylphenol (NP), which is well known as an endocrine disrupter, has been detected widely in untreated sewage or waste water streams. Given the necessity of discovering an eco-friendly method of degrading this toxic organic compound, this study was conducted to isolate NP-degrading microorganisms from the aqueous environment. NP-degrading microbes were isolated through NP-containing enrichment culture. Finally, a microbial consortium, SW-3, capable of degrading NP with high efficiency, was selected from the mixture sample. The microbial consortium SW-3 was able to degrade over 99% of 100 ppm NP in the culture medium for 40 days at $25^{\circ}C$. The microbial consortium SW-3 seemed to utilize NP as a carbon source, since NP was the sole carbon source in the culture medium. In order to isolate the NP-degrading bacterium, we further conducted single colony isolation using the microbial consortium SW-3. Four strains isolated from SW-3 exhibited lower NP-degradation efficiency than that of SW-3, suggesting that NP was degraded by the co-metabolism of the microbial consortium. We suggest that the microbial consortium obtained in this study would be useful in developing an eco-friendly bioremediation technology for NP degradation.

SD Rat에 있어서 출생 전.후에 걸친 Di(n-butyl) Phthalate 노출에 의한 발생면역독성 (Developmental Immunotoxicity in SD Rat Pups Exposed by Di(n-butyl) Phthalate through Pre and Postnatal)

  • 엄준호;정승태;이종권;박재현;권태우;김지영;오혜영;김형수
    • Toxicological Research
    • /
    • 제18권4호
    • /
    • pp.401-409
    • /
    • 2002
  • Phthalate esters have possible effects on the endocrine system. Di-n-butyl phthalate (DBP) is one of the most commonly wed phthalic acid esters (PAEs). It is extensively wed as a plasticizer in elastomers, as a solvent for printing inks and resins, and as a textile lubricating agent. It is also present in the formulations of various cosmetic products. DBP has been identified as a reproductive toxicant in several animal species and also know as a endocrine disruptor. The objective of this study was to investigate the effect of DBP on developmental immune Junction wing rat pups as experimental animals. Timed-bred pregnant SD rats were orally dosed with 0, 250, 500, or 750 mg DBP/kg body weight once a day from gestational day (GD) 5 to 18 and postpartum day (PD) 3 to 18. On PD22, the dams and their pups were euthanized and examined for alteration in parameters associated to immune function. The results showed no significant changes in body weight, thymus weight, thymus and spleen cellularities, the polyclonal activation respones of splenocyte with ConA and LPS, and also the distribution of arterial blood cells and thymocyto subsets in both rat dam and pups. However DBP exposure on rat dam resulted in increases of liver weights of dam and their pups except 750 mg DBP/kg, and body and spleen weights in pups except 750 mg DBP/kg. On the other hands, distribution rates of CD8+ T cells at 500 mg DBP/kg and B cells at 750 mg DBP/kg among splenocyte subsets were significantly increased in rat pups, unlike dams. Reasons of these distribution alterations of CD8+ T cells and B cells in rat pups are under study.

GC/MS-SIM에 의한 하수 슬러지중에 포함된 Octylphenol, Nonylphenol, Di-octylphthalate의 정량 (Analysis of Octylphenol, Nonylphenol, Di-octylphthalate in Sewage Sludge by GC/MS-SIM)

  • 김종훈
    • 분석과학
    • /
    • 제12권3호
    • /
    • pp.248-255
    • /
    • 1999
  • 국내 주요 하수 슬러지(Z-1, Z-2시)에서 내분비계 장애물질로 의심 받는 여러 가지 물질 중 octylphenol(OP), nonylphenol(NP), di-octylphthalate(DOP)를 이 염화메탄을 이용하여 Soxhlet 장치로 추출한 후 GC/MS-SIM 방법으로 그들의 함량을 결정하였다. Z-1시 하수 슬러지의 경우 octylphenol, nonylphenol, di-octylphthalate의 함량이 각각 $3.25{\pm}0.07{\mu}g/g$, $1168{\pm}36{\mu}g/g$, $1172{\pm}57{\mu}g/g$이었고, Z-2 하수 슬러지는 octylphenol, nonylphenol, di-octylphthalate가 각각 $0{\mu}g/g$, $10.8{\pm}0.1{\mu}g/g$, $80{\pm}62{\mu}g/g$이 검출되었다. 특히 Z-1하수 슬러지에서 검출된 nonylphenol과 di-octylphthalate의 양은 매우 높은 값으로 생태계로 순환될 경우 매우 위험한 수준으로 평가되었으며, 또한 인간의 건강과 생식능력에 영향을 미칠 것으로 사료된다.

  • PDF

Bisphenol a induces reproductive dysfunction in male mice

  • Young-Joo, Yi;Malavige Romesha, Chandanee;Dong-Won, Seo;Jung-Min, Heo;Min, Cho;Sang-Myeong, Lee
    • 농업과학연구
    • /
    • 제48권4호
    • /
    • pp.935-944
    • /
    • 2021
  • It has been suggested that bisphenol A (BPA), a known endocrine disruptor, interferes with the endocrine system, causing reproductive dysfunction. Recently, BPA has been found in waste water due to incomplete sewage purification, possibly threatening health through its ingestion via tap water. In this study, young male mice (6 - 7 weeks old) were administered water containing BPA (50 mg·kg-1) for four weeks, while control mice consumed water without BPA. Serum, epididymal spermatozoa and testicular sections were assessed after sacrificing the mice on day 28. No significant differences were obtained between the groups in the body, testis and seminal vesicle weights. However, the epididymal sperm motility and count levels were significantly reduced in BPA-fed mice. Significantly higher hepatotoxicity levels were also observed in mice ingesting BPA as compared to the control mice. The level of serum testosterone was reduced, and testicular sections revealed incomplete and irregular spermatogenesis in BPA-ingested mice. The sperm proteasomal-proteolytic activity level has been implicated in sperm function and is measured in motile spermatozoa using fluorometric substrates. High ubiquitin C-terminal hydrolase activity levels were observed in the control mice without BPA. During a mating trial, a low pregnancy rate (71.4%) was observed in females mated with males who had consumed BPA (100% in the control mice). Overall, BPA adversely affected spermatogenesis and quality, as indicated by decreased sperm motility, concentration and serum testosterone levels, resulting in reduced fertility competence.

Effects of acute di-n-butyl phthalate administration on oxidative stress parameters

  • Choi, Dal-Woong;Kim, Young-Hwan;Sohn, Jong-Ryeul;Moon, Kyung-Hwan;Byeon, Sang-Hoon
    • 한국환경보건학회:학술대회논문집
    • /
    • 한국환경보건학회 2004년도 International Conference Global Environmental Problems and their Health Consequences
    • /
    • pp.178-181
    • /
    • 2004
  • Di-n-butyl phthalate (DBP) is used extensively in the plastic industry and has been known as an environmental hormone (endocrine disruptor). Present study was undertaken to examine whether DBP can induce oxidative stress in mice. In this study, oxidative stress was measured in terms of the modification of lipid peroxidation and gamma-glutamyltranspeptidase (${\gamma}-GT$) activity. The activity of ${\gamma}-GT$, the level of lipid peroxidation and serum toxicity index were measured in male ICR mice after treatment with DBP (5 g/kg, po). Administration of DBP was found to significantly increase the level of lipid peroxidation approximately 2 fold in liver. The activity of ${\gamma}-GT$ in the liver of DBP-exposed animals was also increased approximately 2.5 fold. However, DBP did not alter the parameters for hepatotoxicity and nephrotoxicity such as alanine aminotransferase (ALT), aspartate aminotransferase (AST) and creatinine. These results indicate that DBP can induce oxidative stress in mice. The ${\gamma}-GT$ activity is considered to be increased as one of the adaptive defense mechanisms to oxidative stress induced by DBP.

  • PDF

Effect of di-n-butyl-phthalate on cytotoxic activity of natural killer cells in C57BL/6

  • Juno H. Eom;Chung, Seung-Tae;Kim, Jin-Ho;Park, Jae-Hyun;Chung, Hyung-Jin;Hwang, In-Chang;Kim, Dong-Sup;Kim, Hyung-Soo
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2001년도 International Symposium on Signal transduction in Toxicology
    • /
    • pp.114-114
    • /
    • 2001
  • Di-n-butyl phthalate (DBP) is not only a plasticizer and solvent used in industry but also one of endocrine disruptor chemicals, a low level contaminant found in a wide variety of different media ranging from drinking water to infant formulae. To evaluate the cytotoxic function of NK cells in mice after contact with DBP, C57BL/6 female mice were orally dosed with di-n-butyl phthalate (250, 500, or 750 mg/kg body weight) for 14 consecutive days, and the control mice were administered vehicle (corn oil).(omitted)

  • PDF

Isolation of a Pseudomonas sp. Capable of Utilizing 4-Nonylphenol in the Presence of Phenol

  • Chakraborty Joydeep;Dutta Tapan K.
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권11호
    • /
    • pp.1740-1746
    • /
    • 2006
  • Enrichment techniques led to the isolation of a Pseudomonas sp. strain P2 from municipal waste-contaminated soil sample, which could utilize different isomers of a commercial mixture of 4-nonylphenol when grown in the presence of phenol. The isolate was identified as Pseudomonas sp., based on the morphological, nutritional, and biochemical characteristics and 16S rDNA sequence analysis. The ${\beta}$-ketoadipate pathway was found to be involved in the degradation of phenol by Pseudomonas sp. strain P2. Gas chromatography-mass spectrometric analysis of the culture media indicated degradation of various major isomers of 4-nonylphenol in the range of 29-50%. However, the selected ion monitoring mode of analysis of biodegraded products of 4-nonylphenol indicated the absence of any aromatic compounds other than those of the isomers of 4-nonylphenol. Moreover, Pseudomonas sp. strain P2 was incapable of utilizing various alkanes individually as sole carbon source, whereas the degradation of 4-nonylphenol was observed only when the test organism was induced with phenol, suggesting that the degradation of 4-nonylphenol was possibly initiated from the phenolic moiety of the molecule, but not from the alkyl side-chain.

Isolation and Characterization of Nonylphenol-degrading Bacteria

  • Yu, Dae-Ung;Kim, Dong-Myung;Chung, Yong-Hyun;Lee, Yang-Bong;Kim, Young-Mog
    • Fisheries and Aquatic Sciences
    • /
    • 제15권2호
    • /
    • pp.91-97
    • /
    • 2012
  • To isolate a nonylphenol (NP)-degrading bacterium, we isolated a single colony from the NP-degrading microbial consortium SW-3, which was previously isolated from an aqueous environment. Ten colonies that exhibited different cell morphologies were isolated and the strains were named SW-3-A, -B, -C, -D, -E, -F1, -F2, -G, -H, and -I. The ability of isolates to degrade NP was evaluated by kinetic analysis by the constant of NP degradation rate ($k_1$) and the half-life time of NP degradation ($t_{1/2}$). SW-3-F1, -F2, -G, and -I strains were superior at degrading NP. The $k_1$ and $t_{1/2}$ values of the four strains were sixfold higher and one-sixth lower, respectively, than those of the consortium strain. Additionally, SW-3-F1, -G, and -I strains were tested for their ability to degrade NP during coculture. NP degradation by coculture with a combination of all three strains was inferior to that of culture conducted with single isolates, suggesting that the three strains are antagonistic toward each other during NP degradation.