• 제목/요약/키워드: End-effector tracking

검색결과 51건 처리시간 0.031초

평면형 병렬 케이블 구동 로봇에 대한 형상보정 (Calibration for a Planar Cable-Driven Parallel Robot)

  • ;정진우;전종표;박석호;박종오;고성영
    • 제어로봇시스템학회논문지
    • /
    • 제21권11호
    • /
    • pp.1070-1075
    • /
    • 2015
  • This paper proposes a calibration algorithm for a three-degree-of-freedom (DOF) planar cable-driven parallel robot (CDPR). To evaluate the proposed algorithm, we calibrated winches and an optical tracking sensor, measured the end-effector pose using the optical tracking sensor, and calculated the accurate robot configuration using the measurement information. To conduct an accuracy test on the end-effector pose, we followed guidelines from "Manipulating industrial robots - Performance criteria and related test methods." Through the test, it is verified that the position accuracy can be improved by up to 20% for a $2m{\times}2m$-sized planar cable robot using the proposed calibration algorithm.

DNP을 이용한 플랜트의 강인 안정화 기법 (A Method of Robust Stabilization of the Plants Using DNP)

  • 조현섭
    • 한국산학기술학회논문지
    • /
    • 제9권6호
    • /
    • pp.1574-1580
    • /
    • 2008
  • 본 논문에서는 외란이나 시스템의 파라미터 변동 및 불확실성 등이 존재하는 자동화 설비시스템을 강인하고 정밀하게 제어할 수 있도록 하기 위해 동적 신경망 처리기(DNP)인 신경망 제어기를 설계하였다. 자동화 설비시스템에서 부품의 조립, 가공 등 복잡하고 정교한 임무를 수행시키기 위해서는 end-effector의 이동경로 궤적에 대한 추적제어 뿐만 아니라 목표물에 대하여 접촉하는 힘의 궤적에 대한 추적 제어가 필수적이다. 또한 자동화 설비시스템에서 플랜트의 역기구학적인 좌표변환을 계산하기 위한 학습구조를 개발하였으며, DNP가 이용될 수 있는 예를 설명하였다. 제안된 동적 신경망인 DNP의 구조와 학습 알고리즘을 제시하고 컴퓨터 모의실험을 통해 학습 성능을 증명하였다.

최적 제어기법을 이용한 다관절 유연 로보트팔의 역동역학 해석 (Inverse Dynamic Analysis of A Flexible Robot Arm with Multiple Joints by Using the Optimal Control Method)

  • Kim, C.B.;Lee, S.H.
    • 한국정밀공학회지
    • /
    • 제10권3호
    • /
    • pp.133-140
    • /
    • 1993
  • In this paper, we prpose a method for tracking optimally a spatial trajectory of the end-effector of flexible robot arms with multiple joints. The proposed method finds joint trajectories and joint torques necessary to produce the desired end-effector motion of flexible manipulator. In inverse kinematics, optimized joint trajectories are computed from elastic equations. In inverse dynamics, joint torques are obtained from the joint euqations by using the optimized joint trajectories. The equations of motion using finite element method and virtual work principle are employed. Optimal control is applied to optimize joint trajectories which are computed in inverse kinematics. The simulation result of a flexible planar manipulator is presented.

  • PDF

퍼지신경망을 이용한 로보트의 비쥬얼서보제어 (Visual servo control of robots using fuzzy-neural-network)

  • 서은택;정진현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1994년도 Proceedings of the Korea Automatic Control Conference, 9th (KACC) ; Taejeon, Korea; 17-20 Oct. 1994
    • /
    • pp.566-571
    • /
    • 1994
  • This paper presents in image-based visual servo control scheme for tracking a workpiece with a hand-eye coordinated robotic system using the fuzzy-neural-network. The goal is to control the relative position and orientation between the end-effector and a moving workpiece using a single camera mounted on the end-effector of robot manipulator. We developed a fuzzy-neural-network that consists of a network-model fuzzy system and supervised learning rules. Fuzzy-neural-network is applied to approximate the nonlinear mapping which transforms the features and theire change into the desired camera motion. In addition a control strategy for real-time relative motion control based on this approximation is presented. Computer simulation results are illustrated to show the effectiveness of the fuzzy-neural-network method for visual servoing of robot manipulator.

  • PDF

저차원화된 리커런트 뉴럴 네트워크를 이용한 비주얼 서보잉 (Visual Servoing of Robot Manipulators using Pruned Recurrent Neural Networks)

  • 김대준;이동욱;심귀보
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1997년도 춘계학술대회 학술발표 논문집
    • /
    • pp.259-262
    • /
    • 1997
  • This paper presents a visual servoing of RV-M2 robot manipulators to track and grasp moving object, using pruned dynamic recurrent neural networks(DRNN). The object is stationary in the robot work space and the robot is tracking and grasping the object by using CCD camera mounted on the end-effector. In order to optimize the structure of DRNN, we decide the node whether delete or add, by mutation probability, first in case of delete node, the node which have minimum sum of input weight is actually deleted, and then in case of add node, the weight is connected according to the number of case which added node can reach the other nodes. Using evolutionary programming(EP) that search the struture and weight of the DRNN, and evolution strategies(ES) which train the weight of neuron, we pruned the net structure of DRNN. We applied the DRNN to the Visual Servoing of a robot manipulators to control position and orientation of end-effector, and the validity and effectiveness of the pro osed control scheme will be verified by computer simulations.

  • PDF

여유자유도 로봇의 기구학, 동역학 및 제어를 위한 확장실공간 해석 (Extended Operational Space Formulation for the Kinematics, Dynamics, and Control of the Robot Manipulators with Redundancy)

  • 장평훈;박기철;김승호
    • 대한기계학회논문집
    • /
    • 제18권12호
    • /
    • pp.3253-3269
    • /
    • 1994
  • In this paper a new concept, named the Extended Operational Space Formulation, has been proposed for the effective analysis and real-time control of the robot manipulators with kinematic redundancy. The extended operational space consists of operational space and optimal null space. The operational space is used to describe robot end-effector motion; whereas the optimal null space, defined as the target space of the self motion manifold, is used to express the self motion for the secondary tasks. Based upon the proposed formulation, the kinematics, statics, and dynamics of redundant robots have been analyzed, and an efficient control algorithm has been proposed. Using this algorithm, one can optimize a performance measure while tracking a desired end-effector trajectory with a better computational efficiency than the conventional methods. The effective ness of the proposed method has been demonstrated with simulations.

이동 물체 포착을 위한 비젼 서보 제어 시스템 개발 (Development of Visual Servo Control System for the Tracking and Grabbing of Moving Object)

  • 최규종;조월상;안두성
    • 동력기계공학회지
    • /
    • 제6권1호
    • /
    • pp.96-101
    • /
    • 2002
  • In this paper, we address the problem of controlling an end-effector to track and grab a moving target using the visual servoing technique. A visual servo mechanism based on the image-based servoing principle, is proposed by using visual feedback to control an end-effector without calibrated robot and camera models. Firstly, we consider the control problem as a nonlinear least squares optimization and update the joint angles through the Taylor Series Expansion. And to track a moving target in real time, the Jacobian estimation scheme(Dynamic Broyden's Method) is used to estimate the combined robot and image Jacobian. Using this algorithm, we can drive the objective function value to a neighborhood of zero. To show the effectiveness of the proposed algorithm, simulation results for a six degree of freedom robot are presented.

  • PDF

로봇 제어를 위한 변형 기준 경로 발생 알고리즘의 개발 (The development of generating reference trajectory algorithm for robot manipulator)

  • 민경원;이종수;최경삼
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.912-915
    • /
    • 1996
  • The computed-torque method (CTM) shows good trajectory tracking performance in controlling robot manipulator if there is no disturbance or modelling errors. But with the increase of a payload or the disturbance of a manipulator, the tracking errors become large. So there have been many researches to reduce the tracking error. In this paper, we propose a new control algorithm based on the CTM that decreases a tracking error by generating new reference trajectory to the controller. In this algorithm we used the concept of sliding mode theory and fuzzy system to reduce chattering in control input. For the numerical simulation, we used a 2-link robot manipulator. To simulate the disturbance due to a modelling uncertainty, we added errors to each elements of the inertia matrix and the nonlinear terms and assumed a payload to the end-effector. In this simulation, proposed method showed better trajectory tracking performance compared with the CTM.

  • PDF

유압 굴삭기의 궤적 추종을 위한 강인 제어 (Robust Control of Trajectory Tracking for Hydraulic Excavator)

  • 최종환;김승수;양순용;이진걸
    • 제어로봇시스템학회논문지
    • /
    • 제10권1호
    • /
    • pp.22-29
    • /
    • 2004
  • This paper studies the coordinated trajectory control of an excavator as a kind of robotic manipulators driven by hydraulic actuators. Hydraulic robot system has many non-linearity in dynamics and kinematics, and strong coupling among joints(or hydraulic cylinders). This paper proposes a combined controller frame of the adaptive robust control(ARC) and the sliding mode control(SMC) for the trajectory tracking control of the excavator to preserve the advantages of the both methods while overcoming their drawbacks, namely, asymptotic stability of adaptive system for parametric uncertainties and guaranteed transient performance of sliding mode control for both parametric uncertainties and external disturbance. The suggested control technique is applied for the tracking of a straight-line motion of end-effector of manipulators, and through computer simulations, its trajectory tracking performances and the robustness to payload variation and uncertainties are illustrated.

기준 경로의 변형에 의한 로붓 매니플레이터 제어에 관한 연구 (The Study on the Control of Robot Manipulator by Modification of Reference Trajectory)

  • 민경원;이종수;최경삼
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 B
    • /
    • pp.1205-1207
    • /
    • 1996
  • The computed-torque method (CTM) shows good trajectory tracking performance in controlling robot manipulator if there is no disturbance or modelling errors. But with the increase of a payload or the disturbance of a manipulator, the tracking errors become large. So there have been many researchs to reduce the tracking error. In this paper, we propose a new control algorithm based on the CTM that decreases a tracking error by generating new reference trajectory to the controller. In this algorithm we used a fuzzy system based on the rule bases. For the numerical simulation, we used a 2-link robot manipulator. To simulate the disturbance due to a modelling uncertainty, we added errors to each elements of the inertia matrix and the nonlinear terms and assumed a payload to the end-effector. In the simulations of several cases, our method showed better trajectory tracking performance compared with the CTM.

  • PDF