• Title/Summary/Keyword: End bearing capacity of pile

Search Result 110, Processing Time 0.03 seconds

Model Tests on a Plastic Pipe Pile for the Analysis of Noise, Energy Transfer Effect and Bearing Capacity due to Hammer Cushion Materials (해머 쿠션 재질에 따른 모형말뚝의 소음, 에너지 전달효율 및 지지력 분석)

  • Lim, Yu-Jin;Hwang, Kwang-Ho;Park, Young-Ho;Lee, Jin-Gul
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.12
    • /
    • pp.33-43
    • /
    • 2006
  • Driving tests using model plastic piles with different hammer cushion materials were performed in order to evaluate the efficiency of energy transfer ratio from the hammer, degree of vibration of the surrounding ground and noise due to impacting. A small pile driving analyzer (PDA) was composed using straingages and Hopkinson bar which is measuring force signal and pile-head velocity. The hammer cushion (cap block) materials used for the model driving tests were commercial Micarta, plywood, polyurethane, rubber (SBR) and silicone rubber. The highest energy transfer ratio was obtained from Micarta in the same soil and driving conditions. Micarta was followed by polyurethane, plywood, rubber and silicone in descending order. The more efficient energy transfdr ratio of the hammer cushion materials became, the bigger average noisy (sound) level was found. In addition, Micarta and polyurethane provided bigger bearing capacities than other materials compared in the same soil and driving conditions in which the static loading tests were performed at the end of driving.

Evaluation of Bearing Capacity Enhancement Effect of Base Expansion Micropile Based on a Field Load Test (현장재하시험을 통한 선단확장형 마이크로파일의 지지력 증대효과 분석)

  • Kim, Seok-Jung;Lee, Seokhyung;Han, Jin-Tae ;Hwang, Gyu-Cheol;Lee, Jeong-Seob ;Yoo, Mintaek
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.4
    • /
    • pp.31-44
    • /
    • 2023
  • A base expansion micropile was developed to improve the bearing capacity of the micropile, which bears a simple device installed at the pile base. Under an axial load, this base expansion structure radially expands at the pile tip and attaches itself around ground, compressing the boring wall in the construction stage. In this study, conventional and base expansion micropiles were constructed in the weathered rock where micropiles are commonly installed. Further, field load tests were conducted to verify the bearing capacity enhancement effect. From the load test results, it was revealed that the shaft resistance of base expansion micropiles was about 12% higher than that of conventional micropiles. The load transfer analysis results also showed that compared to conventional micropiles, the unit skin friction and unit end bearing of base expansion micropiles were 15.4% and 315.1% higher, respectively, in the bearing zone of the micropile.

A Numerical Study on the Estimation Method of the Results of Static Pile Load Test Using the Results of Bi-directional Pile Load Test of Barrette Piles (바렛말뚝의 양방향재하시험을 이용한 정적압축재하시험 결과 추정방법에 관한 수치해석적 연구)

  • Hong, Young-Suk;Yoo, Jae-Won;Kang, Sang-Kyun;Choi, Moon-Bong;Lee, Kyung-Im
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.1
    • /
    • pp.39-53
    • /
    • 2019
  • Bi-directional pile load test (briefly called 'BDH PLT') cannot be performed at loading levels where ultimate bearing capacity could be assessed in field, it is not possible to precisely determine both ultimate load and yield load and under loading. Since the load is transmitted separately to the skin and the end unlike the static pile load test (briefly called 'SPLT') and the direction of loading on the skin is opposite, such methods could have a result different from actual movements of shafts. In this study, three-dimensional finite element method (briefly called '3D FEM') analysis was conducted from results of the BDH PLT, made with barret piles, which were large-diameter cast-in-place concrete piles, and the calculated design constants were applied to the 3D FEM analysis of the SPLT to interpret them numerically and then, actual behaviors of cast-in-place concrete piles were estimated. First, using the results of the BDH PLT with cast-in-place concrete piles, behaviors of the piles made by loading upwards and downwards were analyzed to calculate load-displacement. Second, the design constants, calculated by the 3D FEM analysis and the back analysis, were applied on the 3D FEM analysis for the SPLT, and from these results, behaviors of the SPLT through the BDH PLT was analyzed. Last, the results of the 3D FEM analysis of the SPLT through the BDH PLT was expressed in relationships as {A ratio of bearing capacity of the SPLT and of the BDH PLT (y)} ~ {A ratio of reference displacement and pile circumference (x)}, and they were all classified by reference displacement at 10.0 mm, 15.0 mm, and 25.4 mm.

FEM-based modelling of stabilized fibrous peat by end-bearing cement deep mixing columns

  • Dehghanbanadaki, Ali;Motamedi, Shervin;Ahmad, Kamarudin
    • Geomechanics and Engineering
    • /
    • v.20 no.1
    • /
    • pp.75-86
    • /
    • 2020
  • This study aims to simulate the stabilization process of fibrous peat samples using end-bearing Cement Deep Mixing (CDM) columns by three area improvement ratios of 13.1% (TS-2), 19.6% (TS-3) and 26.2% (TS-3). It also focuses on the determination of approximate stress distribution between CDM columns and untreated fibrous peat soil. First, fibrous peat samples were mechanically stabilized using CDM columns of different area improvement ratio. Further, the ultimate bearing capacity of a rectangular foundation rested on the stabilized peat was calculated in stress-controlled condition. Then, this process was simulated via a FEM-based model using Plaxis 3-D foundation and the numerical modelling results were compared with experimental findings. In the numerical modelling stage, the behaviour of fibrous peat was simulated based on hardening soil (HS) model and Mohr-Coulomb (MC) model, while embedded pile element was utilized for CDM columns. The results indicated that in case of untreated peat HS model could predict the behaviour of fibrous peat better than MC model. The comparison between experimental and numerical investigations showed that the stress distribution between soil (S) and CDM columns (C) were 81%C-19%S (TS-2), 83%C-17%S (TS-3) and 89%C-11%S (TS-4), respectively. This implies that when the area improvement ratio is increased, the share of the CDM columns from final load was increased. Finally, the calculated bearing capacity factors were compared with results on the account of empirical design methods.

Development of Design Method of Disconnected Piled Raft Foundation System (기초분리말뚝 공법의 설계기법 개발)

  • Choi, Jung-In;Min, Ki-Hoon;Kim, Sung-Ho;Kwon, Oh-Sung;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.691-699
    • /
    • 2008
  • In the design of a foundation, settlement of the foundation may exceed allowable design criteria even with a competent bearing stratum. In such a case, a piled-raft foundation system may be adopted using piles as settlement reducing component. In this paper, Disconnected Piled Raft Foundation (DPRF) system, which installs disconnected piles underneath the raft and uses the piles as ground reinforcements, is studied as a cost effective design method against the classical piled-raft foundation system. To this end, large size loading tests were carried out on weathered ground changing area replacement ratio and length of piles. The results indicated that the settlement of the reinforced ground was reduced by 34~87% and the allowable bearing pressure increased by 70% on average from those of the unreinforced original ground, respectively. The correlating formula between the area replacement ratio and the load bearing ratio of piles were derived from the test results and numerical analysis. From the correlation, a design method determining the size and the quantity of the disconnected piles to enhance the bearing capacity of original ground to the desired value was proposed based on one inch settlement criteria.

  • PDF

The Behavior of Large Diameter Rock Socketed Piles (암반 정착 대구경 피어기초의 거동특성에 관한 연구)

  • Kim, Tae-Hyun;Kim, Chan-Kook;Hwang, Eui-Seok;Lee, Bong-Real;Kim, Hak-Moon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1245-1250
    • /
    • 2006
  • The rapid growth of the economy recently gas led to increasing social needs for large scaled structures, such as high-rise buildings and long span bridges. In building these large-scaled structures the trend has been to construct foundations beating on or in rock masses in order to ensure stability and serviceability of the structure under several significant loads. However. when designing the drilled shaft foundation socketed in rock masses in Korea, the bearing capacity for the pier used to be determined by using the empirical expression, which depends on the compressive strength of the rock, or presumable bearing capacity recommended on foreign references or manuals. In this study, numerical analyses are used to trace rock-socketed pile behavior and are made alike with pile load test result in field. The result of this numerical analyses study have shown that following factors have a significant influence on the load capacity and settlement of the pier. Significant influence first factor of the geometry of the socket as defined by the length to diameter ratio. Second factor of the modulus of the rock both around the socket and below the base. third factor of the condition of the end of the pier with respect to the removal of drill cuttings and other loose material from the bottom of the socket.

  • PDF

An Analysis on the Behavior Characteristics of the Side of Drilled Shafts in Rocks (암반에 근입된 현장타설말뚝의 주면부 거동특성 분석)

  • Lee, Hyukjin;Lee, Hyungkyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.6
    • /
    • pp.101-111
    • /
    • 2006
  • In case of drilled shafts installed by drilling through soft overburden onto a strong rock, the piles can be regarded as end-bearing elements and their working load is determined by the safe working stress on the pile shaft at the point of minimum cross-section or by code of practice requirements. Drilled shafts drilled down for some depth into weak or weathered rocks and terminated within these rocks act partly as friction and partly as end-bearing piles. The base resistance component can contribute significantly to the ultimate capacity of the pile. However, the shaft resistance is typically mobilized at considerably smaller pile movements than that of the base. In addition, the base response can be adversely affected by any debris that is left in the bottom of the socket. The reliability of base response therefore depends on the use of a construction and inspection technique which leaves the socket free of debris. This may be difficult and costly to achieve, particularly in deep sockets, which are often drilled under water or drilling slurry. As a consequence of these factors, shaft resistance generally dominates pile performance at working loads. The efforts to improve the prediction of drilled shaft pile performance are therefore primarily concerned with the complex mechanisms of shaft resistance development. In this study, the numerical analyses are carried out to investigate the behavior characteristics of side of rock socketed drilled shafts varying the loading condition at the pile head. The difference of behavior characteristics of side resistance is also evaluated with the effects of modelling of asperity.

  • PDF

Performance Evaluation of Pull-out Load of a New Type of Double-wall Pile Foundation for Easy Demolition (기초구조물 회수가 용이한 신형식 이중벽 말뚝기초의 인발하중 성능평가)

  • Kim, Jae-Hyun;Kim, Jeong-Soo;Lee, Minjy;Sven, Falcon Sen;Choo, Yun Wook;Hwang, Sung-Pil
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.4
    • /
    • pp.21-32
    • /
    • 2022
  • Steel pile foundations are widely used for offshore constructions due to their high bearing capacity and efficiency. Typically, offshore structures that have reached the end of their design life are required to be demolished. However, pile foundations are often left on site due to technical and economic limitations. The pile left on the site not only pollutes the environment, but can also cause obstacles for the construction of new structures. Therefore, research is required to completely eliminate these foundations at the site. In this study, a new type of double-wall pile foundation that can drastically reduce the pull-out load was conceptually proposed, and a series of model tests were performed to validate the performance of the double-wall pile foundation. The installation and extraction of the double-wall pile were simulated in dry sand in the model test, and the measured up-lift load was compared to that of the conventional pile. According to the result, the maximum up-lift load induced by the decommissioning of the double-wall pile was reduced by 45% when compared to the traditional pile in dense sand. This study verified the mechanism for reducing the up-lift load of the double-wall foundation and confirmed the possibility of completely decommissioning a pile that has reached the end of its nominal service life.

Estimation of Load-Settlement Curves of Embedded Piles Combining Results of End of Initial Driving and Restrike Dynamic Pile Tests (초기항타 및 재항타 동재하시험 결과를 조합한 매입말뚝의 하중-침하량 곡선 산정)

  • Seo, Mi Jeong;Park, Jong-Bae;Park, Min-Chul;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.7
    • /
    • pp.15-28
    • /
    • 2020
  • As the skin friction of an embedded pile is produced by the cement paste injected into the borehole, the skin friction cannot be evaluated by the end of initial driving test, which is conducted before the cement paste is cured. In addition, the total resistance of an embedded pile may not be properly evaluated during the restrike test if the base resistance is not fully mobilized because of the insufficient driven energy. The objective of this study is to suggest a new load-settlement curve of embedded piles by combining the results of the end of initial driving and restrike tests. Test piles are installed at fields by using the embedded pile method, and the results of the dynamic pile tests are analyzed using CAse Pile Wave Analysis Program (CAPWAP) after the end of initial driving and restrike tests are conducted. A new load transfer curve, which combines the behaviors of the pile base at the end of initial driving and of the pile shaft at the restrike, is suggested, and a new load-settlement curve is obtained. Subsequently, the resistances of the test piles are evaluated using the combined load-settlement curve, and compared with the results from the end of initial driving and restrike tests. The results showed that the resistances, which are evaluated using the combined load-settlement curve, may overcome the underestimation of the resistance because of the insufficient driven energy. In addition, the resistance resulted from the combined load-settlement curve may be more similar to that from the static load test because the suggested load transfer curve is closer to the behavior of the embedded pile compared to the results of end of initial driving and restrike tests. Therefore, this study demonstrates that the combined load-settlement curve may be effectively used for the evaluation of the bearing capacity of embedded piles.

Evaluation of Yield Load in Pile Load Tests on Driven Piles (관입말뚝에 대한 연직재하시험시 항복하중의 판정법)

  • 홍원표;심기석
    • Geotechnical Engineering
    • /
    • v.5 no.1
    • /
    • pp.7-18
    • /
    • 1989
  • In pile load tests on end bearing piles, generally, it is not possible to continue loading to the ultimate load. Thus, the concept of yield load has been introduced for determining design loads Iron the pile load test records. The conventional rules to determine the yield load were not available for evaluation on pile load test records obtained in 6 fields nearby westers 8r Southern Coasts in Korea. A new rule 9.as presented to determine easily the yield load, based on investigations on the pile load test records. The yield load of piles is determined at the infiection point on semi-logarithmic coordinates (P-logS), in which load is plotted in normal scale and settlement is plotted in logarithmic scale. This method may not only save much costs and times but also present safe luorking circumstances for pile load tests in field. It was found that the yield load represented the elastic limit of the pile load-settlement behalf.iota. The ultimate load, which is given at 25.4mm settlement on pile head, was 1.5 times of the yield load. The allowable long-term and short-term load capacities were, respectively, 50% and 75% of the yield load. The safety factors to get the allowable pile capacity were obtained as 2.0~4.0 for the equations to predict the static pile capacity.

  • PDF