• Title/Summary/Keyword: Encapsulation Process

Search Result 162, Processing Time 0.033 seconds

Preparation of Valuable Compounds Encapsulated Polymer Nanoparticles with High Payload Using Core-crosslinked Amphiphilic Polymer Nanoparticles (코아 가교 양친성 고분자 나노입자를 이용한 고함량 유용 약물 담지 고분자 나노입자 제조)

  • Kim, Nahae;Kim, Juyoung
    • Applied Chemistry for Engineering
    • /
    • v.27 no.1
    • /
    • pp.26-34
    • /
    • 2016
  • In this study, core-crosslinked amphiphilic polymer (CCAP) nanoparticles prepared using a reactive amphiphilic polymer precursor (RARP) were used for preparing some valuable compounds encapsulated polymer nanoparticles with high payload through nanoprecipitation process. Various solvents (acetone, ethanol, and THF) having different polarity and CCAP nanoparticles prepared using different amphiphilicity were used for the preparation of ${\alpha}$-tocopherol encapsulated polymer nanoparticles to investigate their effects on the encapsulation efficiency, payload, nanoparticle size, and stability. CCAP dissolved in hydrophobic solvent, THF, could form ${\alpha}$-tocopherol encapsulated polymer nanoparticles dispersed in water with the high payload of ${\alpha}$-tocopherol and encapsulation efficiency. Because of their physically and chemically robust nano-structure originated from crosslinking of the hydrophobic core, CCAP nanoparticles could encapsulate ${\alpha}$-tocopherol with the high payload (33 wt%) and encapsulation efficiency (97%), and form 70 nm-sized stable nanoparticles in water.

Study on the OLED Thin Film Encapsulation of the Al2O3 Thin Layer Formed by Atomic Layer Deposition Method (원자층 증착방법에 의한 Al2O3 박막의 OLED Thin Film Encapsulation에 관한 연구)

  • Kim, Ki Rak;Cho, Eou Sik;Kwon, Sang Jik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.1
    • /
    • pp.67-70
    • /
    • 2022
  • In order to prevent water vapor and oxygen permeation in the organic light emitting diodes (OLED), Al2O3 thin-film encapsulation (TFE) technology were investigated. Atomic layer deposition (ALD) method was used for making the Al2O3 TFE layer because it has superior barrier performance with advantages of excellent uniformity over large scales at relatively low deposition temperatures. In this study, the thickness of the Al2O3 layer was varied by controlling the numbers of the unit pulse cycle including Tri Methyl Aluminum(Al(CH3)3) injection, Ar purge, and H2O injection. In this case, several process parameters such as injection pulse times, Ar flow rate, precursor temperature, and substrate temperatures were fixed for analysis of the effect only on the thickness of the Al2O3 layer. As results, at least the thickness of 39 nm was required in order to obtain the minimum WVTR of 9.04 mg/m2day per one Al2O3 layer and a good transmittance of 90.94 % at 550 nm wavelength.

Enhancement of Immuno-modulatory of Centella asiatica L. Urban with Edible Polymer through Nano-encapsulation Process (병풀 추출물의 식용 나노입자화를 통한 면역 활성 증진)

  • Ha, Ji-Hye;Kwon, Min-Chul;Kim, Young;Jeong, Seung-Seop;Jeong, Myoung-Hoon;Hwang, Baik;Lee, Hyeon-Yong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.17 no.4
    • /
    • pp.257-265
    • /
    • 2009
  • Phosphatidylcholine was used to encapsulate aqueous extracts of Centella asiatica, and its biological activity was compared with another aqueous extracts. Nanoparticle of C. asiatica was made by encapsulation to w/o type spherical liposome which of aqueous extracts seized with oil phase as 78.2 nm average diameter. Cytotoxicity of the nanoparticle was measured on human skin fibroblast cells, CCD-986sk, and showed lower cytotoxicity on 1.0 mg/$m{\ell}$ of highest concentration as 28% than that of another extracts. The nanoparticle showed the highest promotion of human B and T cell growth up to 138% and 135%, respectively, compared to the control. and the NK cell growth was promoted up to 8% higher than the control in proportion to secretion of IL-6 and TNF-$\alpha$ from immune cell growth. Also nanoparticle showed highest inhibition activity of hyaluronidase on 1.0 mg/$m{\ell}$ of highest concentration as 60.5%. It seems that because of enhanced biological application of aqueous extracts on cell through nano-encapsulation process.

Effect of Collagen Concentration on the Viability and Metabolic Function of Encapsulated Hepatocytes

  • Kim, Sung-Koo;Yu, Sun-Hee;Lee, Ji-Hyun;Axel Racemacher;Lee, Doo-Hoon;Park, Jung-Keug
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.3
    • /
    • pp.423-427
    • /
    • 2001
  • Chitosan/alginate capsules were formed by electrostatic interactions and had appropriated mechanical strength, permeability to albumin, and stability to hepatocytes. Rat hepatocytes were isolated and immobilized in chitosan/alginate capsules. During the encapsulation process with hepatocyte, 10% of viability was decreased mainly due to the low pH of the chitosan solution. Among various capsule fabrication methods, the chitosan-alginate capsule showed the highest mechanical strength. Addition of collagen in the capsule with hepatocytes enhanced hepatic metabolism as well as the cell viability for 2 weeks of culture. The hepatocyte in the capsule without collagen decreased the viability to 10% for 2-week cultures.

  • PDF

Encapsulation of Nanomaterials within Intermediary Layer Cross-linked Micelles Using a Photo-Cross-linking Agent

  • Kim, Jin-Sook;Youk, Ji-Ho
    • Macromolecular Research
    • /
    • v.17 no.11
    • /
    • pp.926-930
    • /
    • 2009
  • A new method for encapsulating nanomaterials within intermediary layer cross-linked (ILCL) polymeric micelles using a bifunctional photo-cross-linking agent was developed. For ILCL polymeric micelles, an amphiphilic triblock copolymer of poly(ethylene glycol)-b-poly(2-hydroxyethyl methacrylate)-b-poly(methyl methacrylate) (PEG-PHEMA-PMMA) was synthesized via consecutive atom transfer radical polymerization (ATRP), Di(4-hydroxyl benzophenone) dodecanedioate (BPD) was used as a bifunctional photo-cross-linking agent. The PMMA-tethered Au nanoparticles and BPD, or pyrene and BPD were encapsulated in the PEG-PHEMA-PMMA micelles, and their intermediary layers were photo-cross-linked by UV irradiation for 1 h. The HEMA units donated labile hydrogens to the excited-state benzophenone groups in BPD, and they were subsequently cross-linked by BPD through radical-radical combination. The spherical structures of the PEG-PHEMA-PMMA micelles containing the Au nanoparticles or pyrene were unaffected by the photo-cross-linking process.

Review for Immobilization Methods of Biosorbent (생물흡착제의 고정화 방법에 대한 고찰)

  • Jeon, Choong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.19 no.2
    • /
    • pp.16-21
    • /
    • 2011
  • Immobilization of biosorbent is very important for application to real wastewater treatment process because biosorbent itself does not have enough tough structure. Therefore, resent research on heavy metal biosorption using biomass has been focused on its efficient immobilization method. To improve the mechanical strength of freely biosorbent, many immobilization methods have been suggested for applications to the biosorbent such as microorganisms or polysaccharides. In this study, various immobilization methods such as adsorption, covalent binding, entrapment, encapsulation, and crosslinking will be introduced.

Development of a Commercial Process for Micro-Encapsulation of Lactic Acid Bacteria Using Sodium Alginate (알긴산 나트륨을 이용한 유산균 캡슐화의 상업화 공정 개발)

  • Kim, Jiyeon;You, Seong-sik
    • Korean Chemical Engineering Research
    • /
    • v.55 no.3
    • /
    • pp.313-321
    • /
    • 2017
  • We aimed to develop commercialization process of encapsulation which is superior in productivity compared to existing methods by using sodium alginate. Also, in the same process, sodium alginate with chitosan was used to encapsulate lactic acid bacteria with the same process and then the viable cell counts of the two encapsulated lactic acid bacteria were compared. As a test result of the fluidized drying process developed by the present researchers, it was found that the drying time was shortened by 15 to 20 hours compared to the freeze drying method, but the number of viable lactic acid bacteria was about 75% as compared with freeze drying. However, considering the cost and time of drying, it can be confirmed that the commercialization process is possible by the fluidized bed drying method. When the number of viable cells of Ca-alginate capsule and Chitosan-alginate capsule were compared, it was confirmed that there were about $1{\times}10^9$ or more bacteria in the former and about $1{\times}10^3$ in the latter. The lactic acid bacterium capsules prepared by the present technique were stable for 96 hours or more at pH 4.65 and 6.01, but disappeared within 1 hour at pH 7.07 and 8.35. This suggests that the disintegration of lactic acid bacteria can be easily occurred in small and large intestine.

Effect of Different Carrier Agents on Physicochemical Properties of Spray-dried Pineapple (Ananas comosus Merr.) Powder

  • Quoc, Le Pham Tan
    • Journal of the Korean Chemical Society
    • /
    • v.64 no.5
    • /
    • pp.259-266
    • /
    • 2020
  • The main purpose of this study is to examine the different physicochemical properties of spray-dried products. The carrier agents and powders after the spray-drying process were analyzed for encapsulation yield, moisture content, color parameters, total polyphenol content (TPC), antioxidant capacity (AC), bulk density, flowability, wettability, hygroscopicity, water solubility index (WSI), particle size and microstructure. The spray-drying process was carried out with different carrier agents including maltodextrin (MD) and the combination of maltodextrin and gum arabic (MD-GA) with MA/GA ratio of 70/30, dried at the inlet/outlet air temperature of 160 ℃/70 ℃, 4 bar, airflow rate of 70 ㎥·h-1 and feed flow rate of 750 mL·h-1. The results showed that the different carrier agents have significant influences on the physicochemical properties of the powder produced by the spray-drying method. In there, while the values of recovery efficiency and flowability of spray-dried products from MD are higher than those of spray-dried products from MD-GA combination, the opposite is true for the values of TPC, AC, bulk density and wettability, whereas hygroscopicity and WSI values are equally represented in both products.

Simple Fabrication of Green Emission and Water-Resistant CsPbBr3 Encapsulation Using Commercial Glass Frits (상업용 유리프릿의 소결 공정을 이용한 내수성을 갖는 CsPbBr3/Glass 세라믹 복합체의 제작)

  • Mun, Na-eun;Kim, Sunghoon
    • Korean Journal of Materials Research
    • /
    • v.31 no.1
    • /
    • pp.54-59
    • /
    • 2021
  • In this work, narrow-band green-emitting CsPbBr3 particles are embedded in commercialized glass composites by a facile dry process. By optimizing the method through sintering in glass frit (GF) composites including CsBr and PbBr2, used as precursors, the encapsulation of CsPbBr3 particles made them waterproof with green fluorescence. To improve the fluorescent properties by reducing aggregation of CsPbBr3, fumed silica (FS) is additionally used to help particles avoid bulking up in the glass matrix. The CsPbBr3 perovskite/glass composites are characterized using scanning electron microscopy (SEM) images and energy-dispersive X-ray spectroscopy (EDS) maps, which support the existence of CsPbBr3 particles in the glass matrix. The photoluminescence (PL) properties demonstrate that the emission spectrum peak, full width at half maximum (FWHM), and photoluminescence quantum yield (PLQY) values are 519 nm, 17 nm, and 17.7 %. We also confirm the water-resistant properties. To enhance water/moisture stability, the composite sample is put directly into water, with its PLQY monitored periodically under UV light.

Pattern-based Business Process Change Management in Dynamic Business Environment

  • Kim, Dongsoo;Kim, Minsoo
    • Journal of Information Technology and Architecture
    • /
    • v.10 no.3
    • /
    • pp.295-303
    • /
    • 2013
  • This paper presents a new approach to managing dynamic business process changes based on business process change patterns. We identify and categorize business process change patterns that occur recurrently in a dynamic business environment. Several issues regarding management of process versions are discussed, and a pattern-based version management method for handling process changes more flexibly is explained in detail. We propose a mechanism for abstract process execution with runtime encapsulation of a business process, which can maximize the flexibility of process execution using multiple process versions. In addition, we propose a concept of process promotion and demotion that can dynamically choose an actual version of the process at run-time. With our pattern-based process change management and versioning approach, it is expected that the flexibility and efficiency of BPM systems can be enhanced significantly.