Encapsulation of Nanomaterials within Intermediary Layer Cross-linked Micelles Using a Photo-Cross-linking Agent

  • Kim, Jin-Sook (Department of Advanced Fiber Engineering, Division of Nano-Systems, Inha University) ;
  • Youk, Ji-Ho (Department of Advanced Fiber Engineering, Division of Nano-Systems, Inha University)
  • Published : 2009.11.25

Abstract

A new method for encapsulating nanomaterials within intermediary layer cross-linked (ILCL) polymeric micelles using a bifunctional photo-cross-linking agent was developed. For ILCL polymeric micelles, an amphiphilic triblock copolymer of poly(ethylene glycol)-b-poly(2-hydroxyethyl methacrylate)-b-poly(methyl methacrylate) (PEG-PHEMA-PMMA) was synthesized via consecutive atom transfer radical polymerization (ATRP), Di(4-hydroxyl benzophenone) dodecanedioate (BPD) was used as a bifunctional photo-cross-linking agent. The PMMA-tethered Au nanoparticles and BPD, or pyrene and BPD were encapsulated in the PEG-PHEMA-PMMA micelles, and their intermediary layers were photo-cross-linked by UV irradiation for 1 h. The HEMA units donated labile hydrogens to the excited-state benzophenone groups in BPD, and they were subsequently cross-linked by BPD through radical-radical combination. The spherical structures of the PEG-PHEMA-PMMA micelles containing the Au nanoparticles or pyrene were unaffected by the photo-cross-linking process.

Keywords

References

  1. J. S. Kim and J. H. Youk, Polymer, 50, 2204 (2009) https://doi.org/10.1016/j.polymer.2009.03.013
  2. V. Btn, X.-S. Wang, M. V. de Paz Bez, K. L. Robinson, N. C. Billingham, S. P. Armes, and Z. Tuzar, Macromolecules, 33, 1 (2000) https://doi.org/10.1021/ma9914669
  3. S. Liu and S. P. Armes, J. Am. Chem. Soc., 123, 9910 (2001) https://doi.org/10.1021/ja011206i
  4. S. Liu, J. V. M. Weaver, M. Save, and S. P. Armes, Langmuir, 18, 8350 (2002) https://doi.org/10.1021/la020496t
  5. S. Harrisson and K. L. Wooley, Chem. Comm., 3259 (2005)
  6. J. S. Kim, H. J. Jeon, J. J. Park, M. S. Park, and J. H. Youk, J. Polym. Sci. Part A: Polym. Chem., 47, 4963 (2009) https://doi.org/10.1002/pola.23547
  7. R. Jayalakshmi, S. R. Ramadas, and C. N. Pillai, Org. Prep. Proced. Int., 13, 71 (1981) https://doi.org/10.1080/00304948109356098
  8. N. R. Jana, L. Gearheart, and C. J. Murphy, J. Phys. Chem. B, 105, 4065 (2001) https://doi.org/10.1021/jp0107964
  9. K. S. Taton and P. E. Guire, Colloid Surface B, 24, 123 (2002) https://doi.org/10.1016/S0927-7765(01)00225-9
  10. Z. Czech, Int. J. Adhes. Adhes., 27, 195 (2007) https://doi.org/10.1016/j.ijadhadh.2005.10.003
  11. H. S. Do, Y. J. Park, and H. J. Kim, J. Adhes. Sci. Technol., 20, 1529 (2006) https://doi.org/10.1163/156856106778666462
  12. H. Ma, R. H. Davis, and C. N. Bowman, Macromolecules, 33, 331 (2000) https://doi.org/10.1021/ma990821s
  13. R. A. Bottom, J. T. Guthrie, and P. N. Green, Polym. Photochem., 6, 59 (1985) https://doi.org/10.1016/0144-2880(85)90006-5
  14. Y. Kang and T. A. Taton, Macromolecules, 38, 6115 (2005) https://doi.org/10.1021/ma050400c
  15. M. Moffitt, H. Vali, and A. Eisenberg, Chem. Mater., 10, 1021 (1998) https://doi.org/10.1021/cm9705451
  16. T. F. Jaramillo, S.-H. Baeck, B. R. Cuenya, and E. W. McFarland, J. Am. Chem. Soc., 125, 7148 (2003) https://doi.org/10.1021/ja029800v
  17. Y. K. Lee, S. M. Hong, J. S. Kim, J. H. Im, H. S. Min, E. Subramanyam, K. M. Huh, and S. W. Park, Macromol. Res., 15, 330 (2007) https://doi.org/10.1007/BF03218795
  18. C. Park, M. Rhue, J. Lim, and C. Kim, Macromol. Res., 15, 39 (2007) https://doi.org/10.1007/BF03218750