• 제목/요약/키워드: Encapsulation Layer

검색결과 107건 처리시간 0.031초

전도성 CNT 박막의 온도에 따른 저항 변화도 연구 (Temperature-dependent Resistance Change of Conductive CNT Thin-film)

  • 권민규;홍용택
    • 한국전기전자재료학회논문지
    • /
    • 제22권2호
    • /
    • pp.151-157
    • /
    • 2009
  • This paper reports the resistance change of conductive carbon nanotube (CNT) thin-films according to the temperature variation. Resistance of conductive CNT thin-films intrinsically has good thermal sensitivity, but shows environmental dependency. In order to reduce environmental effects, we spin-coated polydimethylsiloxane (PDMS) on the conductive CNT thin-films. We observed that conductive CNT thin-films with a PDMS encapsulation layer showed little environmental dependency, but more linear and stable temperature dependencies. If proper encapsulation is provided, conductive CNT thin-films can be used for temperature sensor applications.

SiNx 박막에 의한 OLED 소자의 보호막 특성 (Passivation Properties of SiNx Thin Film for OLEO Device)

  • 주성후
    • 한국전기전자재료학회논문지
    • /
    • 제19권8호
    • /
    • pp.758-763
    • /
    • 2006
  • We has been studied the thin film encapsulation effect for organic light-emitting diodes (OLED). To evaluate the passivation properties of the passivation layer materials, we have carried out the fabrication of green light emitting diodes with ultra violet(UV) light absorbing polymer resin, $SiO_2,\;and\;SiN_x$, respectively. From the measurement results of shrinkage properties according to the exposure time to the atmosphere, we found that $SiN_x$ thin film is the best material for passivation layer. We have investigated the emission efficiency and life time of OLED device using the package structure of $OLED/SiN_x/polymer$ resin/Al/polymer resin. The emission efficiency of this OLED device was 13 lm/W and life time was about 2,000 hours, which reach 95 % of the performance for the OLED encapsulated with metal.

The Effect of Low-Temperature Carbon Encapsulation on Si Nanoparticles for Lithium Rechargeable Batteries

  • Jung, Jaepyeong;Song, Kyeongse;Kang, Yong-Mook
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권7호
    • /
    • pp.2162-2166
    • /
    • 2013
  • The tailored surface modification of electrode materials is crucial to realize the wanted electronic and electrochemical properties. In this regard, a dexterous carbon encapsulation technique can be one of the most essential preparation methods for the electrode materials for lithium rechargeable batteries. For this purpose, DL-malic acid ($C_4H_6O_5$) was here used as the carbon source enabling an amorphous carbon layer to be formed on the surface of Si nanoparticles at enough low temperature to maintain their own physical or chemical properties. Various structural characterizations proved that the bulk structure of Si doesn't undergo any discernible change except for the evolution of C-C bond attributed to the formed carbon layer on the surface of Si. The improved electrochemical performance of the carbon-encapsulated Si compared to Si can be attributed to the enhanced electrical conductivity by the surface carbon layer as well as its role as a buffering agent to absorb the volume expansion of Si during lithiation and delithiation.

Optimization of ZnO:Al properties for $CuInSe_2$ superstrate thin film solar cell

  • 이은우;박순용;이상환;김우남;정우진;전찬욱
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2010년도 춘계학술발표대회
    • /
    • pp.36.1-36.1
    • /
    • 2010
  • While the substrate-type solar cells with Cu(In,Ga)Se2 absorbers yield conversion efficiencies of up 20%[1], the highest published efficiency of Cu(In,Ga)Se2 superstrate solar cell is only 12.8% [2]. The commerciallized Cu(In,Ga)Se2 solar cells are made in the substrate configuration having the stacking sequence of substrate (soda lime glass)/back contact (molybdenum)/absorber layer (Cu(In,Ga)Se2)/buffer layer (cadmium sulfide)/window layer (transparent conductive oxide)/anti reflection layer (MgF2) /grid contact. Thus, it is not possible to illuminate the substrate-type cell through the glass substrate. Rather, it is necessary to illuminate from the opposite side which requires an elaborate transparent encapsulation. In contrast to that, the configuration of superstrate solar cell allows the illumination through the glass substrate. This saves the expensive transparent encapsulation. Usually, the high quality Cu(In,Ga)Se2 absorber requires a high deposition temperature over 550C. Therefore, the front contact should be thermally stable in the temperature range to realize a successful superstrate-type solar cell. In this study, it was tried to make a decent superstrate-type solar cell with the thermally stable ZnO:Al layer obtained by adjusting its deposition parameters in magnetron sputtering process. The effect of deposition condition of the layer on the cell performance will be discussed together with hall measurement results and current-voltage characteristics of the cells.

  • PDF

대면적 실리콘 태양전지의 PDMS 도포에 의한 반사방지막 특성 (Anti-reflection Coating of PDMS by Screen-printing on Large Area of Silicon Solar Cells)

  • 심명섭;정유진;최동진;박현정;강윤묵;김동환;이해석
    • Current Photovoltaic Research
    • /
    • 제10권4호
    • /
    • pp.95-100
    • /
    • 2022
  • Solar cell is a device that converts photon energy into electrical energy. Therefore, absorption of solar spectrum light is one of the most important characteristics to design the solar cell structures. Various methods have emerged to reduce optical losses, such as textured surfaces, back contact solar cells, anti-reflection layers. Here, the anti-reflection coating (ARC) layer is typically utilized whose refractive index value is between air (~1) and silicon (~4) such as SiNx layer (~1.9). This research is to print a material called polydimethylsiloxane (PDMS) to form a double anti-reflection layer. Light with wavelength in the range of 0.3 to 1.2 micrometers does not share a wavelength with solar cells. It is confirmed that the refractive index of PDMS (~1.4) is an ARC layer which decreases the reflectance of light absorption region on typical p-type solar cells with SiNx layer surface. Optimized PDMS printing with analyzing optical property for cell structure can be the effective way against outer effects by encapsulation.

Stabilizing Technology of Pure Vitamin A using Triple Matrix Capsulation

  • Kim, In-Young;Lee, Young-Gue;Seong, Bo-Reum;Lee, Min-Hee;Lee, So-Ra;Choi, Seong-Ho
    • 한국응용과학기술학회지
    • /
    • 제32권4호
    • /
    • pp.694-701
    • /
    • 2015
  • In order to get stabilized pure retinol in skin care cosmetics, developing the three layered matrix bead capsules were studied. This study relates to make a cosmetic composition using the three layered matrix capsule that could increase the stability of the active ingredient. A primary encapsulation, vitamin A (pure retinol) of active ingredient was perfectly capsulated into water-in-oil (Water-in-Oil: W/O) emulsion vesicle using PEG-10 dimethicone copolyol emulsifier. A secondary encapsulation of multiple emulsion of the water-in-oil-in-water (W/O/W) emulsion blending W/O emulsion using sucrose distearate of surfactant was developed using homogenizing emulsifying system. Pure retinol of active ingredient was stably capsulized to inside the W/O/W-multiple emulsion in order to load the triple matrix capsulation. By coating it with a polymer matrix base, encapsulated in the triple layered type, which were developed bead encapsulation of 2~10mm uniformly size. To show beautifully appearance capsulated bead type, these finish particles in this triple matrix layer were developed as a gold, green, dark brown, silver and blue color were encapsulated in the bead types. Structural particle certification of triple matrix layer was observed through SEM analysis. Stability of pure retinol was remained stable more than 99.7% for 30 days at $42^{\circ}C$ incubating conditions compared with non-capsule. This technology was applied in different formulations such as various sizes and colors that by applying the skin care cosmetics. In the future, this technology to encapsulate an unstable active ingredient, we expect to be expanded this application in the food and drug as a time delivery system.

In-situ formation of co particles encapsulated by graphene layers

  • Minjeong Lee;Gyutae Kim;Gyu Hyun Jeong;Aram Yoon;Zonghoon Lee;Gyeong Hee Ryu
    • Applied Microscopy
    • /
    • 제52권
    • /
    • pp.7.1-7.6
    • /
    • 2022
  • The process of encapsulating cobalt nanoparticles using a graphene layer is mainly direct pyrolysis. The encapsulation structure of hybrids prepared in this way improves the catalyst stability, which greatly reduces the leaching of non-metals and prevents metal nanoparticles from growing beyond a certain size. In this study, cobalt particles surrounded by graphene layers were formed by increasing the temperature in a transmission electron microscope, and they were analyzed using scanning transmission electron microscopy (STEM). Synthesized cobalt hydroxide nanosheets were used to obtain cobalt particles using an in-situ heating holder inside a TEM column. The cobalt nanoparticles are surrounded by layers of graphene, and the number of layers increases as the temperature increases. The interlayer spacing of the graphene layers was also investigated using atomic imaging. The success achieved in the encapsulation of metallic nanoparticles in graphene layers paves the way for the design of highly active and reusable heterogeneous catalysts for more challenging molecules.

WLP and New System Packaging Technologies

  • WAKABAYASHI Takeshi
    • 한국마이크로전자및패키징학회:학술대회논문집
    • /
    • 한국마이크로전자및패키징학회 2003년도 기술심포지움 논문집
    • /
    • pp.53-58
    • /
    • 2003
  • The Wafer Level Packaging is one of the most important technologies in the semiconductor industry today. Its primary advantages are its small form factor and low cost potential for manufacturing including test procedure. The CASIO's WLP samples, application example and the structure are shown in Fig.1, 2&3. There are dielectric layer , under bump metal, re-distribution layer, copper post , encapsulation material and terminal solder .The key technologies are 'Electroplating thick copper process' and 'Unique wafer encapsulation process'. These are very effective in getting electrical and mechanical advantages of package. (Fig. 4). CASIO and CMK are developing a new System Packaging technology called the Embedded Wafer Level Package (EWLP) together. The active components (semiconductor chip) in the WLP structure are embedded into the Printed Wiring Board during their manufacturing process. This new technical approach has many advantages that can respond to requirements for future mobile products. The unique feature of this EWLP technology is that it doesn't contain any solder interconnection inside. In addition to improved electrical performance, EWLP can enable the improvement of module reliability. (Fig.5) The CASIO's WLP Technology will become the effective solution of 'KGD problem in System Packaging'. (Fig. 6) The EWLP sample shown in Fig.7 including three chips in the WLP form has almost same structure wi_th SoC's. Also, this module technology are suitable for RF and Analog system applications. (Fig. 8)

  • PDF

초박형 반도체 패키지의 EMC encapsulation을 위한 경화 공정 개발 (Development of Curing Process for EMC Encapsulation of Ultra-thin Semiconductor Package)

  • 박성연;온승윤;김성수
    • Composites Research
    • /
    • 제34권1호
    • /
    • pp.47-50
    • /
    • 2021
  • 본 논문은 차량에 사용되는 B필러의 강화재를 기존의 스틸 소재에서 CFRP(Carbon Fiber Reinforced Plastics)와 GFRP(Glass Fiber Reinforced Plastics)로 대체하여 경량화하는 것이 목표다. 이를 위해서는 무게는 감소시키면서 기존 B필러를 대체할 수 있는 구조안정성을 확보해야 한다. 기존 B필러는 스틸 아우터(outer)를 포함하여 다양한 형상의 스틸 강화재로 구성되며, 이와 같은 스틸 강화재 중 2가지의 스틸 강화재를 복합재로 대체하고자 한다. 이와 같은 스틸 강화재는 강화재 각각을 따로 제작하여 용접을 통해 결합되지만, 복합재 강화재는 패치(patch) 형태의 CFRP와 리브(rib) 구조의 GFRP를 활용하여 압축과 사출 공정을 통해 한번에 제작된다. CFRP는 B필러의 고강도부에 부착되어 측면 하중에 저항하도록 하였으며, GFRP 리브는 위상 최적화(Topology optimization) 기법을 통해 비틀림과 측면 하중을 저항하도록 설계하였다. 구조해석을 통해 기존 스틸 강화재와 비교 분석을 수행하였고, 경량화율을 산출하였다.

Lifetime improvement of Organic Light Emitting Diode by Using LiF Thin Film and UV Glue Encapsulation

  • Hsieh, Huai-En;Huang, Bohr-Ran;Juang, Fuh-Shyang;Tsai, Yu-Sheng;Chang, Ming-Hua;Liu, Mark.O.;Su, Jou-yeh
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권2호
    • /
    • pp.1703-1705
    • /
    • 2007
  • Before the ultra-violet glue encapsulation, the research evaporated LiF thin film on device surface to be the extra packaging layer for improving the lifetime of organic light-emitting diode. The formula of UV glue was specially developed. We found 100 nm LiF is the optimum thickness. The best lifetime obtained by using LiF and special UV glue is 2.4 times longer than those by commercial UV glue.

  • PDF