• Title/Summary/Keyword: Empirical Method

Search Result 3,781, Processing Time 0.03 seconds

Empirical seismic fragility rapid prediction probability model of regional group reinforced concrete girder bridges

  • Li, Si-Qi;Chen, Yong-Sheng;Liu, Hong-Bo;Du, Ke
    • Earthquakes and Structures
    • /
    • v.22 no.6
    • /
    • pp.609-623
    • /
    • 2022
  • To study the empirical seismic fragility of a reinforced concrete girder bridge, based on the theory of numerical analysis and probability modelling, a regression fragility method of a rapid fragility prediction model (Gaussian first-order regression probability model) considering empirical seismic damage is proposed. A total of 1,069 reinforced concrete girder bridges of 22 highways were used to verify the model, and the vulnerability function, plane, surface and curve model of reinforced concrete girder bridges (simple supported girder bridges and continuous girder bridges) considering the number of samples in multiple intensity regions were established. The new empirical seismic damage probability matrix and curve models of observation frequency and damage exceeding probability are developed in multiple intensity regions. A comparative vulnerability analysis between simple supported girder bridges and continuous girder bridges is provided. Depending on the theory of the regional mean seismic damage index matrix model, the empirical seismic damage prediction probability matrix is embedded in the multidimensional mean seismic damage index matrix model, and the regional rapid prediction matrix and curve of reinforced concrete girder bridges, simple supported girder bridges and continuous girder bridges in multiple intensity regions based on mean seismic damage index parameters are developed. The established multidimensional group bridge vulnerability model can be used to quantify and predict the fragility of bridges in multiple intensity regions and the fragility assessment of regional group reinforced concrete girder bridges in the future.

Review on Library Science Research Evaluation in Korea (문헌정보학분야의 논문평가에 관한 고찰)

  • Lee Seung-Chae
    • Journal of Korean Library and Information Science Society
    • /
    • v.36 no.4
    • /
    • pp.199-210
    • /
    • 2005
  • This study reviews the research papers which deal with research evaluation in library science and discusses on quantitative and qualitative research methods, and non-empirical research. For the purpose of improving paper production system, encouragement of publishing review paper and review Journal Is recommended.

  • PDF

Rainfall Intensity Estimation with Cloud Type using Satellite Data

  • Jee, Joon-Bum;Lee, Kyu-Tae
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.660-663
    • /
    • 2006
  • Rainfall estimation is important to weather forecast, flood control, hydrological plan. The empirical and statistical methods by measured data(surface rain gauge, rainfall radar, Satellite) is commonly used for rainfall estimation. In this study, the rainfall intensity for East Asia region was estimated using the empirical relationship between SSM/I data of DMSP satellite and brightness temperature of GEOS-9(10.7${\mu}m$) with cloud types(ISCCP and MSG classification). And the empirical formula for rainfall estimation was produced by PMM (Probability Matching Method).

  • PDF

Empirical Bayes Interval Estimation by a Sample Reuse Method

  • Cho, Kil-Ho;Choi, Dal-Woo;Chae, Hyeon-Sook
    • Journal of the Korean Data and Information Science Society
    • /
    • v.8 no.1
    • /
    • pp.41-48
    • /
    • 1997
  • We construct the empirical Bayes(EB) confidence intervals that attain a specified level of EB coverage for the unknown scale parameter in the Weibull distribution with the known shape parameter under the type II censored data. Our general approach is to use an EB bootstrap samples introduced by Larid and Louis(1987). Also, we compare the coverage probability and the expected interval length for these bootstrap intervals with those of the naive intervals through Monte Carlo simulation.

  • PDF

Meta Analysis of Usability Experimental Research Using New Bi-Clustering Algorithm

  • Kim, Kyung-A;Hwang, Won-Il
    • The Korean Journal of Applied Statistics
    • /
    • v.21 no.6
    • /
    • pp.1007-1014
    • /
    • 2008
  • Usability evaluation(UE) experiments are conducted to provide UE practitioners with guidelines for better outcomes. In UE research, significant quantities of empirical results have been accumulated in the past decades. While those results have been anticipated to integrate for producing generalized guidelines, traditional meta-analysis has limitations to combine UE empirical results that often show considerable heterogeneity. In this study, a new data mining method called weighted bi-clustering(WBC) was proposed to partition heterogeneous studies into homogeneous subsets. We applied the WBC to UE empirical results and identified two homogeneous subsets, each of which can be meta-analyzed. In addition, interactions between experimental conditions and UE methods were hypothesized based on the resulting partition and some interactions were confirmed via statistical tests.

Optimal Design of Solenoid Actuator Using Empirical Coefficient and Optimization Technique (최적화 기법을 사용한 직류 솔레노이드 액츄에이터의 설계변수 결정)

  • Sung, Baek-Ju;Lee, Eun-Woong;Lee, Jae-Gyu
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.689-690
    • /
    • 2006
  • The development method of a pneumatic solenoid actuator which is used as key components in automobile and aircraft industry is described. For the optimal design of solenoid actuator, we applied the general electromagnetic theory and empirical knowledge. By using the governing equation for the solenoid actuator based on the electromagnetic theory and empirical coefficient, and constrained of optimization technique, we proposed the optimal design technique of low consumption type DC solenoid actuator. The design results of the DC 24V, 0.5W solenoid actuator were presented.

  • PDF

An Improved Semi-Empirical Model for Radar Backscattering from Rough Sea Surfaces at X-Band

  • Jin, Taekyeong;Oh, Yisok
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.2
    • /
    • pp.136-140
    • /
    • 2018
  • We propose an improved semi-empirical scattering model for X-band radar backscattering from rough sea surfaces. This new model has a wider validity range of wind speeds than does the existing semi-empirical sea spectrum (SESS) model. First, we retrieved the small-roughness parameters from the sea surfaces, which were numerically generated using the Pierson-Moskowitz spectrum and measurement datasets for various wind speeds. Then, we computed the backscattering coefficients of the small-roughness surfaces for various wind speeds using the integral equation method model. Finally, the large-roughness characteristics were taken into account by integrating the small-roughness backscattering coefficients multiplying them with the surface slope probability density function for all possible surface slopes. The new model includes a wind speed range below 3.46 m/s, which was not covered by the existing SESS model. The accuracy of the new model was verified with two measurement datasets for various wind speeds from 0.5 m/s to 14 m/s.

Empirical Fragility Curves for Bridge (교량의 경험적 손상도 곡선)

  • Lee, Jong-Heon;Kim, Woon-Hak;Choi, Jung-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.1
    • /
    • pp.255-262
    • /
    • 2002
  • This paper presents a statistical analysis of empirical fragility curves for bridge. The empirical fragility curves are developed utilizing bridge damage data obtained from the 1995 Hyogoken Nanbu(Kobe) earthquake. Two-parameter lognormal distribution functions are used to represent the fragility curves with the parameters estimated by the maximum likelihood method. This paper also presents methods of testing the goodness of fit of the fragility curves and estimating the confidence intervals of the two parameters(median and log-standard deviation) of the distribution. An analytical interpretation of randomness and uncertainty associated with the median is provided.

Accuracy Measures of Empirical Bayes Estimator for Mean Rates

  • Jeong, Kwang-Mo
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.6
    • /
    • pp.845-852
    • /
    • 2010
  • The outcomes of counts commonly occur in the area of disease mapping for mortality rates or disease rates. A Poisson distribution is usually assumed as a model of disease rates in conjunction with a gamma prior. The small area typically refers to a small geographical area or demographic group for which very little information is available from the sample surveys. Under this situation the model-based estimation is very popular, in which the auxiliary variables from various administrative sources are used. The empirical Bayes estimator under Poissongamma model has been considered with its accuracy measures. An accuracy measure using a bootstrap samples adjust the underestimation incurred by the posterior variance as an estimator of true mean squared error. We explain the suggested method through a practical dataset of hitters in baseball games. We also perform a Monte Carlo study to compare the accuracy measures of mean squared error.

A Development on the Fault Prognosis of Bearing with Empirical Mode Decomposition and Artificial Neural Network (경험적 모드 분해법과 인공 신경 회로망을 적용한 베어링 상태 분류 기법)

  • Park, Byeonghui;Lee, Changwoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.12
    • /
    • pp.985-992
    • /
    • 2016
  • Bearings have various uses in industrial equipment. The lifetime of bearings is often lesser than anticipated at the time of purchase, due to environmental wear, processing, and machining errors. Bearing conditions are important, since defects and damage can lead to significant issues in production processes. In this study, we developed a method to diagnose faults in the bearing conditions. The faults were determined using kurtosis, average, and standard deviation. An intrinsic mode function for the data from the selected axis was extracted using empirical mode decomposition. The intrinsic mode function was obtained based on the frequency, and the learning data of ANN (Artificial Neural Network) was concluded, following which the normal and fault conditions of the bearing were classified.