• Title/Summary/Keyword: Emotional recognition system

Search Result 151, Processing Time 0.028 seconds

Stress Detection System for Emotional Labor Based On Deep Learning Facial Expression Recognition (감정노동자를 위한 딥러닝 기반의 스트레스 감지시스템의 설계)

  • Og, Yu-Seon;Cho, Woo-hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.613-617
    • /
    • 2021
  • According to the growth of the service industry, stresses from emotional labor workers have been emerging as a social problem, thereby so-called the Emotional Labor Protection Act was implemented in 2018. However, insufficient substantial protection systems for emotional workers emphasizes the necessity of a digital stress management system. Thus, in this paper, we suggest a stress detection system for customer service representatives based on deep learning facial expression recognition. This system consists of a real-time face detection module, an emotion classification FER module that deep-learned big data including Korean emotion images, and a monitoring module that only visualizes stress levels. We designed the system to aim to monitor stress and prevent mental illness in emotional workers.

  • PDF

A Study on Image Recommendation System based on Speech Emotion Information

  • Kim, Tae Yeun;Bae, Sang Hyun
    • Journal of Integrative Natural Science
    • /
    • v.11 no.3
    • /
    • pp.131-138
    • /
    • 2018
  • In this paper, we have implemented speeches that utilized the emotion information of the user's speech and image matching and recommendation system. To classify the user's emotional information of speech, the emotional information of speech about the user's speech is extracted and classified using the PLP algorithm. After classification, an emotional DB of speech is constructed. Moreover, emotional color and emotional vocabulary through factor analysis are matched to one space in order to classify emotional information of image. And a standardized image recommendation system based on the matching of each keyword with the BM-GA algorithm for the data of the emotional information of speech and emotional information of image according to the more appropriate emotional information of speech of the user. As a result of the performance evaluation, recognition rate of standardized vocabulary in four stages according to speech was 80.48% on average and system user satisfaction was 82.4%. Therefore, it is expected that the classification of images according to the user's speech information will be helpful for the study of emotional exchange between the user and the computer.

Discrimination of Three Emotions using Parameters of Autonomic Nervous System Response

  • Jang, Eun-Hye;Park, Byoung-Jun;Eum, Yeong-Ji;Kim, Sang-Hyeob;Sohn, Jin-Hun
    • Journal of the Ergonomics Society of Korea
    • /
    • v.30 no.6
    • /
    • pp.705-713
    • /
    • 2011
  • Objective: The aim of this study is to compare results of emotion recognition by several algorithms which classify three different emotional states(happiness, neutral, and surprise) using physiological features. Background: Recent emotion recognition studies have tried to detect human emotion by using physiological signals. It is important for emotion recognition to apply on human-computer interaction system for emotion detection. Method: 217 students participated in this experiment. While three kinds of emotional stimuli were presented to participants, ANS responses(EDA, SKT, ECG, RESP, and PPG) as physiological signals were measured in twice first one for 60 seconds as the baseline and 60 to 90 seconds during emotional states. The obtained signals from the session of the baseline and of the emotional states were equally analyzed for 30 seconds. Participants rated their own feelings to emotional stimuli on emotional assessment scale after presentation of emotional stimuli. The emotion classification was analyzed by Linear Discriminant Analysis(LDA, SPSS 15.0), Support Vector Machine (SVM), and Multilayer perceptron(MLP) using difference value which subtracts baseline from emotional state. Results: The emotional stimuli had 96% validity and 5.8 point efficiency on average. There were significant differences of ANS responses among three emotions by statistical analysis. The result of LDA showed that an accuracy of classification in three different emotions was 83.4%. And an accuracy of three emotions classification by SVM was 75.5% and 55.6% by MLP. Conclusion: This study confirmed that the three emotions can be better classified by LDA using various physiological features than SVM and MLP. Further study may need to get this result to get more stability and reliability, as comparing with the accuracy of emotions classification by using other algorithms. Application: This could help get better chances to recognize various human emotions by using physiological signals as well as be applied on human-computer interaction system for recognizing human emotions.

A Survey on Image Emotion Recognition

  • Zhao, Guangzhe;Yang, Hanting;Tu, Bing;Zhang, Lei
    • Journal of Information Processing Systems
    • /
    • v.17 no.6
    • /
    • pp.1138-1156
    • /
    • 2021
  • Emotional semantics are the highest level of semantics that can be extracted from an image. Constructing a system that can automatically recognize the emotional semantics from images will be significant for marketing, smart healthcare, and deep human-computer interaction. To understand the direction of image emotion recognition as well as the general research methods, we summarize the current development trends and shed light on potential future research. The primary contributions of this paper are as follows. We investigate the color, texture, shape and contour features used for emotional semantics extraction. We establish two models that map images into emotional space and introduce in detail the various processes in the image emotional semantic recognition framework. We also discuss important datasets and useful applications in the field such as garment image and image retrieval. We conclude with a brief discussion about future research trends.

The Emotion Recognition System through The Extraction of Emotional Components from Speech (음성의 감성요소 추출을 통한 감성 인식 시스템)

  • Park Chang-Hyun;Sim Kwee-Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.9
    • /
    • pp.763-770
    • /
    • 2004
  • The important issue of emotion recognition from speech is a feature extracting and pattern classification. Features should involve essential information for classifying the emotions. Feature selection is needed to decompose the components of speech and analyze the relation between features and emotions. Specially, a pitch of speech components includes much information for emotion. Accordingly, this paper searches the relation of emotion to features such as the sound loudness, pitch, etc. and classifies the emotions by using the statistic of the collecting data. This paper deals with the method of recognizing emotion from the sound. The most important emotional component of sound is a tone. Also, the inference ability of a brain takes part in the emotion recognition. This paper finds empirically the emotional components from the speech and experiment on the emotion recognition. This paper also proposes the recognition method using these emotional components and the transition probability.

Measurement of Human Sensibility by Bio-Signal Analysis (생체신호 분석을 통한 인간감성의 측정)

  • Park, Joon-Young;Park, Jahng-Hyon;Park, Ji-Hyoung;Park, Dong-Soo
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.935-939
    • /
    • 2003
  • The emotion recognition is one of the most significant interface technologies which make the high level of human-machine communication possible. The central nervous system stimulated by emotional stimuli affects the autonomous nervous system like a heart, blood vessel, endocrine organs, and so on. Therefore bio-signals like HRV, ECG and EEG can reflect one' emotional state. This study investigates the correlation between emotional states and bio-signals to realize the emotion recognition. This study also covers classification of human emotional states, selection of the effective bio-signal and signal processing. The experimental results presented in this paper show possibility of the emotion recognition.

  • PDF

Classification of Three Different Emotion by Physiological Parameters

  • Jang, Eun-Hye;Park, Byoung-Jun;Kim, Sang-Hyeob;Sohn, Jin-Hun
    • Journal of the Ergonomics Society of Korea
    • /
    • v.31 no.2
    • /
    • pp.271-279
    • /
    • 2012
  • Objective: This study classified three different emotional states(boredom, pain, and surprise) using physiological signals. Background: Emotion recognition studies have tried to recognize human emotion by using physiological signals. It is important for emotion recognition to apply on human-computer interaction system for emotion detection. Method: 122 college students participated in this experiment. Three different emotional stimuli were presented to participants and physiological signals, i.e., EDA(Electrodermal Activity), SKT(Skin Temperature), PPG(Photoplethysmogram), and ECG (Electrocardiogram) were measured for 1 minute as baseline and for 1~1.5 minutes during emotional state. The obtained signals were analyzed for 30 seconds from the baseline and the emotional state and 27 features were extracted from these signals. Statistical analysis for emotion classification were done by DFA(discriminant function analysis) (SPSS 15.0) by using the difference values subtracting baseline values from the emotional state. Results: The result showed that physiological responses during emotional states were significantly differed as compared to during baseline. Also, an accuracy rate of emotion classification was 84.7%. Conclusion: Our study have identified that emotions were classified by various physiological signals. However, future study is needed to obtain additional signals from other modalities such as facial expression, face temperature, or voice to improve classification rate and to examine the stability and reliability of this result compare with accuracy of emotion classification using other algorithms. Application: This could help emotion recognition studies lead to better chance to recognize various human emotions by using physiological signals as well as is able to be applied on human-computer interaction system for emotion recognition. Also, it can be useful in developing an emotion theory, or profiling emotion-specific physiological responses as well as establishing the basis for emotion recognition system in human-computer interaction.

A study on behavior response of child by emotion coaching of teacher based on emotional recognition technology (감성인식기술 기반 교사의 감정코칭이 유아에게 미치는 반응 연구)

  • Choi, Moon Jung;Whang, Min-Cheol
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.7
    • /
    • pp.323-330
    • /
    • 2017
  • Emotion in early childhood has been observed to make an important effect on behavioral development. The teacher has coached to develop good behavior based on considering emotional response rather than rational response. This study was to determine significance of emotional coaching for behavior development according emotion recognized by non-verbal measurement system developed specially in this study. The participants were 44 people and were asked to study in four experimental situation. The experiment was designed to four situation such as class without coaching, behavioral coaching, emotion coaching, and emotion coaching based on emotional recognition system. The dependent variables were subjective evaluation, behavioral amplitude, and HRC (Heart Rhythm Coherence) of heart response. The results showed the highest positive evaluation, behavioral amplitude, and HRC at emotion coaching based on emotional recognition system. In post-doc analysis, the subjective evaluation showed no difference between emotion coaching and system based emotion coaching. However, the behavioral amplitude and HRC showed a significant response between two coaching situation. In conclusion, quantitative data such as behavioral amplitude and HRC was expected to solve the ambiguity of subjective evaluation. The emotion coaching of teacher using emotional recognition system was can be to improve positive emotion and psychological stability for children.

A Training Method for Emotion Recognition using Emotional Adaptation (감정 적응을 이용한 감정 인식 학습 방법)

  • Kim, Weon-Goo
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.998-1003
    • /
    • 2020
  • In this paper, an emotion training method using emotional adaptation is proposed to improve the performance of the existing emotion recognition system. For emotion adaptation, an emotion speech model was created from a speech model without emotion using a small number of training emotion voices and emotion adaptation methods. This method showed superior performance even when using a smaller number of emotional voices than the existing method. Since it is not easy to obtain enough emotional voices for training, it is very practical to use a small number of emotional voices in real situations. In the experimental results using a Korean database containing four emotions, the proposed method using emotional adaptation showed better performance than the existing method.

Represented by the Color Image Emotion Emotional Attributes of Size, Quantification Algorithm (이미지의 색채 감성속성을 이용한 대표감성크기 정량화 알고리즘)

  • Lee, Yean-Ran
    • Cartoon and Animation Studies
    • /
    • s.39
    • /
    • pp.393-412
    • /
    • 2015
  • See and feel the emotion recognition is the image of a person variously changed according to the environment, personal disposition. Thus, the image recognition has been focused on the emotional sensibilities computer you want to control the number studies. However, existing emotional computing model is numbered and the objective is clearly insufficient measurement conditions. Thus, through quantifiable image Emotion Recognition and emotion computing, is a study of the situation requires an objective assessment scheme. In this paper, the sensitivity was represented by numbered sizes quantified according to the image recognition calculation emotion. So apply the principal attributes of the color image emotion recognition as a configuration parameter. In addition, in calculating the color sensitivity by applying a digital computing focused research. Image color emotion computing research approach is the color of emotion attribute, brightness, and saturation reflects the weighted according to importance to the emotional scores. And free-degree by applying the sensitivity point to the image sensitivity formula (X), the tone (Y-axis) is calculated as a number system. There pleasure degree (X-axis), the tension and position the position of the image point that the sensitivity of the emotional coordinate crossing (Y-axis). Image color coordinates by applying the core emotional effect of Russell (Core Affect) is based on the 16 main representatives emotion. Thus, the image recognition sensitivity and compares the number size. Depending on the magnitude of the sensitivity scores demonstrate this sensitivity must change. Compare the way the images are divided up the top five of emotion recognition emotion emotions associated with 16 representatives, and representatives analyzed the concentrated emotion sizes. Future studies are needed emotional computing method of calculation to be more similar sensibility and human emotion recognition.