• Title/Summary/Keyword: Emitter location

Search Result 22, Processing Time 0.03 seconds

Dependence of LOB-based Emitter Localization Performance on Bias of Emitter Location and Sensor Trajectory (신호원 위치의 편향성 및 센서 이동경로에 따른 선형 LSE 알고리즘 기반 신호원 위치 추정 성능)

  • Lee, Joon-Ho;Cho, Seong-Woo;Kim, Min-Cheol;Jin, Yong-Ki;Lee, Chang-Hoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.585-589
    • /
    • 2009
  • In this paper, passive direction-finding localization of the emitter using noisy line-of-bearing (LOB) measurements is considered. The performance of the LOB-based emitter localization using linear LSE algorithm is given. The Dependence of the performance on bias of emitter location and sensor trajectory is illustrated using the numerical results.

Performance Analysis of Emitter Localization Using Kalman Filter (Kalman filter를 이용한 위치추정 알고리즘의 성능 분석)

  • Lee, Joon-Ho;Cho, Seong-Woo;Lee, Dong-Keun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.6
    • /
    • pp.727-732
    • /
    • 2009
  • In this paper, the dependence of the Kalman filter-based emitter location algorithm on the initial estimate is investigated. Given all the LOB data, the initial estimate of the emitter location is obtained from the linear LSE algorithm with the former LOB data. Using the initial estimate, the Kalman filter algorithm is applied with the remaining LOB data to update the initial estimate. It is shown that as the number of data used in the calculation of the initial estimate increases, the accuracy of the final estimate is improved and the total computational complexity of obtaining the initial estimate and the final estimate increases. In addition, the dependence of the performance of the Kalman filter algorithm on the predefined constant is illustrated.

Estimation and Analysis of Two Moving Platform Passive Emitter Location Using T/FDOA and DOA (이동 수신기 환경에서 연속된 T/FDOA와 DOA를 이용한 고정 신호원의 위치 추정 방법)

  • Park, Jin-Oh;Lee, Moon Seok;Park, Young-Mi
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.1
    • /
    • pp.121-131
    • /
    • 2015
  • Passive emitter localization is preferred to use a small number of receivers as possible for the efficiency of strategic management in the field of modern electronic warfare support. Accurate emitter localization can be expected when utilizing continuous measurable parameters and a appropriate combination of theirs. For this reason, we compare CRLB (Cramer-Rao lower bound) of two moving platform with various measurable parameters to choose a appropriate combination of parameters for a better localization performance. And we propose the passive emitter localization method based on Levenberg-Marquardt algorithm with combined TDOA/FDOA and DOA to achieve better accuracy of emitter localization which is located on the ground and stationary. In addition, we present a method for determining the initial emitter position for LM algorithm's input to avoid the divergence of estimation and local minimum.

Analysis of Two Moving Platform Passive Emitter Location with Continuously Measurable Parameters (2개의 이동하는 수신기를 이용한 측정 정보별 고정 신호원의 위치 추정 성능 분석)

  • Park, Jin-Oh;Lee, Moon Seok;Park, Young-Mi
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.9
    • /
    • pp.157-164
    • /
    • 2014
  • The accuracy of instantaneous passive emitter localization varies with sensing platforms and measurable parameters. Appropriate combination of instantaneous measurable parameters have more accurate localization performance than a single parameter based localization in general. Emitter localization is preferred to use a small number of receivers as possible for the efficiency of strategic management in the field of modern electronic warfare support. For this reason, we compare CRLB (Cramer-Rao lower bound) of two moving platform with various measurable parameters to search a appropriate choice of parameters for the better localization performance through the x-y axis CEP (circular error probable) derived form CLRB. In addition, we present the relation of the localization performance and accuracy of measurable parameters.

Development Plan of a Human Model System for Educating Acupoint Location and Its Implementation (경혈 위치교육 평가지원시스템의 개발계획 수립과 제작)

  • Yeo, Sujung;Nam, Donghyun
    • Korean Journal of Acupuncture
    • /
    • v.36 no.1
    • /
    • pp.44-51
    • /
    • 2019
  • Objectives : Teaching the standardized acupuncture point locations and improving the accuracy of acupoint locations through objective evaluation is a very important part of Korean medicine education. The aim of this study is to develop a dummy system for evaluation and support of teaching acupoint location in meridian and acupoints classes and to introduce the developed system. Methods : We established a protocol for the development of the system. The protocol included definition of usage purpose, definition of its essential performance, and set of scope. The system compares the amount of light at the target acupoint with the amount of light at the other sites to determine whether the target acupoint is properly specificated. Results : A prototype of the system was built according to the protocol and consists of light emitter, dummy, control/operation, input part and output part. The light emitter projects laser beam passing through the skin of the dummy. Light sensors were attached inside the acupoints of the dummy. Three types of light sensors were selected depending on the location of the acupoints. The arithmetic, input, and output parts were constructed using Arduino and Raspberry pi boards. The developed system was applied in class. Conclusions : It is thought that the dummy system for evaluation and support of teaching acupoint location can be used as a training model in order to help teach standardized acupoint locations and objective evaluation.

Analysis on the Contribution of FDOA Measurement Accuracy to the Performance of Combined TDOA/FDOA Localization Systems (TDOA/FDOA 복합 위치추정 시스템에서 FDOA 측정 정확도에 따른 추정 성능 기여도 분석)

  • Kim, Dong-Gyu;Kim, Yong-Hee;Han, Jin-Woo;Song, Kyu-Ha;Kim, Hyoung-Nam
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.5
    • /
    • pp.88-96
    • /
    • 2014
  • In modern electronic warfare systems, the necessity of a more accurate estimation method based on non-AOA (arrival of angle) measurement, such as TDOA and FDOA, have been increased. The previous researches using single TDOA have been carried out in terms of not only the development of emitter location algorithms but also the enhancement of measurement accuracy. Recently, however, the combined TDOA/FDOA method is of considerable interest because it is able to estimate the velocity vector of a moving emitter and acquire a pair of TDOA and FDOA measurements from a single sensor pair. In this circumstance, it is needed to derive the required FDOA measurement accuracy in order that the TDOA/FDOA combined localization system outperforms the previous single TDOA localization systems. Therefore, we analyze the contribution of FDOA measurement accuracy to emitter location, then propose the criterion based on CRLB (Cramer-Rao lower bound). Simulations are included to examine the validity of the proposed criterion by using the Gauss-Newton algorithm.

Gauss-Newton Based Emitter Location Method Using Successive TDOA and FDOA Measurements (연속 측정된 TDOA와 FDOA를 이용한 Gauss-Newton 기법 기반의 신호원 위치추정 방법)

  • Kim, Yong-Hee;Kim, Dong-Gyu;Han, Jin-Woo;Song, Kyu-Ha;Kim, Hyoung-Nam
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.7
    • /
    • pp.76-84
    • /
    • 2013
  • In the passive emitter localization using instantaneous TDOA (time difference of arrival) and FDOA (frequency difference of arrival) measurements, the estimation accuracy can be improved by collecting additional measurements. To achieve this goal, it is required to increase the number of the sensors. However, in electronic warfare environment, a large number of sensors cause the loss of military strength due to high probability of intercept. Also, the additional processes should be considered such as the data link and the clock synchronization between the sensors. Hence, in this paper, the passive localization of a stationary emitter is presented by using the successive TDOA and FDOA measurements from two moving sensors. In this case, since an independent pair of sensors is added in the data set at every instant of measurement, each pair of sensors does not share the common reference sensor. Therefore, the QCLS (quadratic correction least squares) methods cannot be applied, in which all pairs of sensor should include the common reference sensor. For this reason, a Gauss-Newton algorithm is adopted to solve the non-linear least square problem. In addition, to show the performance of the proposed method, we compare the RMSE (root mean square error) of the estimates with CRLB (Cramer-Rao lower bound) and derived the CEP (circular error probable) planes to analyze the expected estimation performance on the 2-dimensional space.

Effects of the irrigation Rate on Wetted Patterns in Sandy Loam Soil Under Trickle irrigation Condition (점적관개에서 관개율이 Sandy Loam토양의 습윤양상에 미치는 영향)

  • 김철수;이근후
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.31 no.2
    • /
    • pp.104-115
    • /
    • 1989
  • In an effort to clarify the wetted patterns of sandy loam soil under trickle irrigation conditions, the distance of wetted zone, infiltration capacity and soil wetted patterns, etc. were measured by gypsum block as soil moisture sensor located every 5 cm vertically and horizontaly in the soil bin under the such conditions as a). irrigation rates set to 2, 4, 6, 8 liters per hour b). total amount of water applied fixed to 14.62 liters per soil bin c) the hearing force of soil measured by plate penetrometer ranging from 1.04 to 1.22kg/cm$_2$ The results can be summarized as follows ; 1. The wetted distance in horizontal direction(H), the wetted distance in vertical direction(D), the horizontal infiltration capacity (iH) and the vertical infiltration capacity(in)could by explained as a function of time t. 2. The horizontal wetted distance (H) is explained by an exponetial function H= a$.$ t where b was found ranging from 021 to 026 under surface trickle irrigation, which was considered a lotlower than the classical value of 0.5 and these measurements were indifferent to the increasing irrigation rates. 3. As for the surface trickle irrigation where horizontal infiltration capacity(iH) is explained as iH = A $.$ t h, the coefficient A increases with respect to irrigation rates within the limits of 0.89~1.34. 4. In terms of surface trickle irrigation of the ratio of Dm Which is maximum vertical wetted distance to Hm, which is maximum horizontal wetted distance, found to be within range of 1.0 to 1.21. It was also noted that the value of Dm decreses when irrigation rates increases while the value of Hm changes the opposite direction. 5. The optimum location of sensors from emitter for surface trickle irrigation should he inside of hemisphere whose lateral radius is 28~30cm long and vertical radius is 10~12cm long. The distance between emitters should be within 60cm long. 6. In the study of vertical wetted distance( D) where D= a $.$ tb, the exponential coefficient b ranged from 0.61 to 0.75 in surface trickle irrigation, and from 0A9 to 0.68 for subsurface trickle irrigation. These measurements showed an increasing tendency to with respect to irrigation rates. 7. In case of vertical infiltration capacity( in), where iD= A $.$ t 1-h, the coefficient A for surface trickle irrigation found to be within range of 0.16 to 0.19 and did not show any relationships with varying degree of irrigation rates. However, the coefficient was varying from 0.09 to 0.22 and showed a tendency to increase vis-a-vis irrigation rates for subsurface trickle irrigation, in contrast. 8. In the observation of subsurface trickle irrigation, it was found that Dm/Hm ratio was within 1.52 to 1.91 and showed a decreasing tendency with respect to increasing rates of irrigation. 9. The location of sensors for subsurface trickle irrigation follows same pattern as above, with vertical distance from emitter being 10~17cm long and horizontal 22~25cm long. The location of emitter should be 50 cm. 10.The relationship between VS which is the volume of wetted soil and Q which is the total amount of water when soil is reached field capacity could be explained as VS= 2.914Q0.91and the irrigation rates showed no impacts on the above relationship.

  • PDF

Fault- Tolerant Tasking and Guidance of an Airborne Location Sensor Network

  • Wu, N.Eva;Guo, Yan;Huang, Kun;Ruschmann, Matthew C.;Fowler, Mark L.
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.3
    • /
    • pp.351-363
    • /
    • 2008
  • This paper is concerned with tasking and guidance of networked airborne sensors to achieve fault-tolerant sensing. The sensors are coordinated to locate hostile transmitters by intercepting and processing their signals. Faults occur when some sensor-carrying vehicles engaged in target location missions are lost. Faults effectively change the network architecture and therefore degrade the network performance. The first objective of the paper is to optimally allocate a finite number of sensors to targets to maximize the network life and availability. To that end allocation policies are solved from relevant Markov decision problems. The sensors allocated to a target must continue to adjust their trajectories until the estimate of the target location reaches a prescribed accuracy. The second objective of the paper is to establish a criterion for vehicle guidance for which fault-tolerant sensing is achieved by incorporating the knowledge of vehicle loss probability, and by allowing network reconfiguration in the event of loss of vehicles. Superior sensing performance in terms of location accuracy is demonstrated under the established criterion.

The Geolocation Estimation System for a Stationary Emitter using Rotating Antenna (회전안테나를 이용한 고정 신호원 위치탐지 시스템)

  • Kwak, Hyungyu;Kim, Sangwon;Choi, Daegyu
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.681-689
    • /
    • 2016
  • In the direction and location finding field of application, AOA, TDOA and FDOA, etc. are used to improve the performance of geolocation. But, these methods cause some limitations such as the calibrations for phase and amplitude matching and precise time synchronization among receiving channels. In this paper, We suggest a method for generating FDOA using rotating antenna and the geolocation of stationary emitter using two receivers in one platform for minimizing the limitations. We present performance of simulation results and test results of the FDOA geolocation system. The direction finding errors of the system are less than $0.1^{\circ}$ rms and the distance errors are less than 3 % compared with the practical distance.