• Title/Summary/Keyword: Emission Tomography

Search Result 762, Processing Time 0.023 seconds

Synthesis of [18F]Fluorocholine Analogues as a Potential Imaging Agent for PET Studies

  • Yu, Kook-Hyun;Park, Jeong-Hoon;Yang, Seung-Dae
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.4
    • /
    • pp.506-510
    • /
    • 2004
  • There have been intensive studies concerning $[^{11}F]$choline ($[^{11}F]$methyldimethyl( ${\beta}$ -hydroxyethyl) ammonium) (1) which is known as a very effective tracer in imaging various human tumors localized in brain, lung, esophagus, rectum, prostate and urinary bladder using Positron Emission Tomography (PET) and there is increasing interest in $^{18}F$ labelled choline (2) and proved to be useful to visualize prostate cancer. We have prepared six $^{18}F$ labelled alkyl choline derivatives (3a-3c, 4a-4c) from ditosylated and dibrominated alkanes in moderate yields. The six alkyl tosylate or bromate ammonium salts have been synthesized as precursors. Radiofluorination was achieved by the treatment of precursors with $^{18}F$ - in the presence of Kryptofix-2.2.2.. The labeling yields varied ranging from 7 to 25%.

Multigrid Wavelet-Based Natural Pixel Method for Image Reconstruction in Emission Computed Tomography

  • Chang je park;Park, Jeong hwan;Cho, Nam-Zin
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05b
    • /
    • pp.705-710
    • /
    • 1998
  • We describe a multigrid wavelet-based natural pixel (WNP) method for image reconstruction in emission computed tomography (ECT). The ECT is used to identify the tagged radioactive material's position in the body for detection of abnormal tissue such as tumor or cancer, as in SPECT and PET. With ECT methodology in parallel beam mode, we formulate a matrix-based reconstruction method for radionuclide sources in the human body. The resulting matrix for a practical problem is very large and nearly singular. To overcome this ill-conditioning, wavelet transform is considered in this study. Wavelets have inherent de-noising and multiscale resolution properties. Therefore, the multigrid wavelet-based natural pixel (WNP) method is very efficient to reconstruct image from projection data that is noisy and incomplete. We test this multigrid wavelet natural pixel (WNP) reconstruction method with the MCNP generated projection data for diagnosis of the simulated cancerous tumor.

  • PDF

Imaging Human Structures

  • Kim Byung-Tae;Choi Yong;Mun Joung Hwan;Lee Dae-Weon;Kim Sung Min
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.5
    • /
    • pp.283-294
    • /
    • 2005
  • The Center for Imaging Human Structures (CIH) was established in December 2002 to develop new diagnostic imaging techniques and to make them available to the greater community of biomedical and clinical researchers at Sungkyunkwan University. CIH has been involved in 5 specific activities to provide solutions for early diagnosis and improved treatment of human diseases. The five area goals include: 1) development of a digital mammography system with computer aided diagnosis (CAD); 2) development of digital radiological imaging techniques; 3) development of unified medical solutions using 3D image fusion; 4) development of multi-purpose digital endoscopy; and, 5) evaluation of new imaging systems for clinical application

Multimodal neuroimaging in presurgical evaluation of childhood epilepsy

  • Jung, Da-Eun;Lee, Joon-Soo
    • Clinical and Experimental Pediatrics
    • /
    • v.53 no.8
    • /
    • pp.779-785
    • /
    • 2010
  • In pre-surgical evaluation of pediatric epilepsy, the combined use of multiple imaging modalities for precise localization of the epileptogenic focus is a worthwhile endeavor. Advanced neuroimaging by high field Magnetic resonance imaging (MRI), diffusion tensor images, and MR spectroscopy have the potential to identify subtle lesions. $^{18}F$-FDG positron emission tomography and single photon emission tomography provide visualization of metabolic alterations of the brain in the ictal and interictal states. These techniques may have localizing value for patients which exhibit normal MRI scans. Functional MRI is helpful for non-invasively identifying areas of eloquent cortex. These advances are improving our ability to noninvasively detect epileptogenic foci which have gone undetected in the past and whose accurate localization is crucial for a favorable outcome following surgical resection.

Radioligands for Imaging Dopamine and Serotonin Receptors and Transporters (도파민과 세로토닌 운반체 및 수용체 영상을 위한 방사성리간드)

  • Chi, Dae-Yoon
    • The Korean Journal of Nuclear Medicine
    • /
    • v.34 no.3
    • /
    • pp.159-168
    • /
    • 2000
  • In the 1980s, techniques to image the human subjects in a three-dimensional direction were developed. Two major techniques are SPECT (Single Photon Emission Computed Tomography) and PET (Positron Emission Tomography) which allow the detector to detect a single photon or annihilation photons emitted from the subjects injected with radiopharmaceuticals. Since the latter two techniques can measure the density of receptors, enzymes and transporters in living human, it may be very important project to develop selective methods of labeling with radionuclides and to develop new radiopharmaceuticals. There has been a considerable interest in developing new compounds which specifically bind to dopamine and serotonin receptor and transporters, and it will be thus very useful to label those compounds with radionuclides in order to gain a better understanding in biochemical and pharmacological interactions in living human. This review mentions the characteristics of radioligands for the imaging of dopamine and serotonin receptors and transporters. Although significant progress has been achieved in the development of new PET and SPECT ligands for in vivo imaging of those receptors and transporters, there are continuous needs of new diagnostic radioligands.

  • PDF

Statistical Methods for Tomographic Image Reconstruction in Nuclear Medicine (핵의학 단층영상 재구성을 위한 통계학적 방법)

  • Lee, Soo-Jin
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.2
    • /
    • pp.118-126
    • /
    • 2008
  • Statistical image reconstruction methods have played an important role in emission computed tomography (ECT) since they accurately model the statistical noise associated with gamma-ray projection data. Although the use of statistical methods in clinical practice in early days was of a difficult problem due to high per-iteration costs and large numbers of iterations, with the development of fast algorithms and dramatically improved speed of computers, it is now inevitably becoming more practical. Some statistical methods are indeed commonly available from nuclear medicine equipment suppliers. In this paper, we first describe a mathematical background for statistical reconstruction methods, which includes assumptions underlying the Poisson statistical model, maximum likelihood and maximum a posteriori approaches, and prior models in the context of a Bayesian framework. We then review a recent progress in developing fast iterative algorithms.

Monte Carlo Simulation Codes for Nuclear Medicine Imaging (핵의학 영상연구를 위한 몬테칼로 모사코드)

  • Chung, Yang Hyun;Beak, Cheal-Ha;Lee, Seung-Jae
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.2
    • /
    • pp.127-136
    • /
    • 2008
  • Monte Carlo simulation methods are especially useful in studying a variety of problems difficult to calculate by experimental or analytical approaches. Nowadays, they are extensively applied to simulate nuclear medicine instrumentations such as single photon emission computed tomography (SPECT) and positron emission tomography (PET) for assisting system design and optimizing imaging and processing protocols. The goal of this paper is to address the practical issues, a potential user of Monte Carlo simulations for nuclear medicine can encounter, to help them to choose a code. This review introduces the different types of Monte Carlo codes currently available for nuclear medicine, comments main features and properties for a code to be proper for a given purpose, and discusses current research trends in Monte Carlo codes.

The segmentation system for the anatomical analysis and diagnosis simulation of multi-modality brain image (다중 모달리티 뇌 영상의 해부학적 분석 및 진단 시뮬레이션을 위한 영상분할 시스템)

  • 윤현주;이정민;김명희
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2004.05a
    • /
    • pp.118-122
    • /
    • 2004
  • 본 논문에서는 인체의 머리 부분을 촬영한 의료 영상에서 뇌 영역만을 분할하는 방법에 대해 제시하고자 한다. 뇌의 해부학적 구조 및 기능적 이상 부위를 파악할 경우에 영상 내에 함께 보여지는 두개골과 뇌척수액 등을 제외한 대뇌피질 영역을 분할하면 보다 효과적인 정보 분석 및 진단이 가능하게 된다. 본 시스템에서는 3단계 알고리즘을 제시한다. 첫 번째 단계에서는 영상 내에 존재하는 잡음을 제거하기 위한 필터링이고, 두 번째 단계에서는 필터링된 결과에 대한 영상분할을 수행하는 것이다 이 때 정확한 결과 도출을 위하여 사용자의 인터렉션이 들어가게 된다. 세번째 단계에서는 형태학적 방법을 이용하여 분할 결과를 보완한다. 본 연구를 위한 실험에는 자기 공명 촬영 영상(MRI: Magnetic Resonance Imaging), 단일 광전자 방출 단층 촬영영상(SPECT: Single Photon Emission Computed Tomography), 양전자 방출 단층 촬영영상(PET: Positron Emission Tomography) 등을 사용하였다. 본 시스템에서는 다양한 모달리티의 뇌 영상에서 대뇌피질 부분을 정확하게 영상 분할함으로써 뇌의 구조적 이상을 판단하기 위한 해부학적 정보 분석을 가능케 하고 있다. 뿐만 아니라 뇌 질환에 대한 정확한 진단 시뮬레이션도 가능하게 하고자 한다.

  • PDF

Strain-promoted alkyne-azide cycloaddition for PET molecular imaging study

  • Jeong, Hyeon Jin;Kim, Dong Wook
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.1 no.1
    • /
    • pp.15-22
    • /
    • 2015
  • $^{18}F$-labeling reaction of bioactive molecule via click chemistry is widely used to produce $^{18}F$-labeled radiotracer in the field of radiopharmaceutical science and molecular imaging. In particular, bioorthogonal strain-promoted alkyne-azide cycloaddition (SPAAC) reaction has received much attention as an alternative ligation method for radiolabeling bioactive molecules such as peptides, DNA, proteins as well as nanoparticles. Moreover, SPAAC based pretargeting method could provide tumor images successfully on positron emission tomography system using nanoparticle such as mesoporous silica nanoparticles.

Synthesis of 68Ga-labeled gold nanoparticles for tumor targeted positron emission tomography imaging

  • Jeon, Jongho;Choi, Mi Hee
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.1 no.1
    • /
    • pp.46-52
    • /
    • 2015
  • Herein we present the synthesis of $^{68}Ga$-labeled gold nanoparticles for in vivo PET imaging. A novel chelator DTPA-Cys was easily prepared from diethylenetriaminepentaacetic dianhydride in high yield. The ${\alpha}_v{\beta}_3$ integrin receptor targeted gold nanoparticle probe was synthesized by using DTPA-Cys, polyethylene glycol and cRGD peptide. $^{68}Ga$ labeling of cRGD conjugated gold nanoparticle was carried out at $40^{\circ}C$ for 30 min. Observed radiochemical yield was more than 75% as determined by radio-TLC and the probe was purified by centrifugation. In vitro stability test showed that 90% of $^{68}Ga$-labeled gold nanoparticle probe was stable in FBS for 1 h. Those results demonstrated that $^{68}Ga$-labeled gold nanoparticle could be used as a potentially useful probe for specific tumor imaging.