DOI QR코드

DOI QR Code

Synthesis of [18F]Fluorocholine Analogues as a Potential Imaging Agent for PET Studies

  • Published : 2004.04.20

Abstract

There have been intensive studies concerning $[^{11}F]$choline ($[^{11}F]$methyldimethyl( ${\beta}$ -hydroxyethyl) ammonium) (1) which is known as a very effective tracer in imaging various human tumors localized in brain, lung, esophagus, rectum, prostate and urinary bladder using Positron Emission Tomography (PET) and there is increasing interest in $^{18}F$ labelled choline (2) and proved to be useful to visualize prostate cancer. We have prepared six $^{18}F$ labelled alkyl choline derivatives (3a-3c, 4a-4c) from ditosylated and dibrominated alkanes in moderate yields. The six alkyl tosylate or bromate ammonium salts have been synthesized as precursors. Radiofluorination was achieved by the treatment of precursors with $^{18}F$ - in the presence of Kryptofix-2.2.2.. The labeling yields varied ranging from 7 to 25%.

Keywords

References

  1. Ishidate, K. Choline Transport and Choline Kinase inPhosphatidylcholine Metabolism; Vance, D. E., Ed.; CRC press:Boca Raton, Florida, 1989; pp 9-32.
  2. Friedland, R. P.; Mathis, C. A.; Budinger, T. F.; Moyer, B. R.;Rosen, M. J. Nucl. Med. 1983, 24, 812.
  3. Hara, T.; Kosaka, N.; Shinoura, N.; Kondo, T. J. Nucl. Med. 1997,38, 842.
  4. Hara, T.; Kosaka, N.; Kishi, H. J. Nucl. Med. 1998, 39, 990.
  5. Hara, T.; Yuasaa, M. Appl. Radiat. Isot. 1999, 50, 531. https://doi.org/10.1016/S0969-8043(98)00097-9
  6. Degrador, T. R.; Coleman, R. E.; Baldwin, S. W.; Price, D. T.; Orr, M. D.; Wang, S. US patent 2002/0061279.
  7. Oh, S. J.; Choe, Y. S.; Kim, S. E.; Choi, Y.; Lee, K. H.; Kim, B.-T.Bull. Korean Chem. Soc. 2000, 21, 1162.
  8. Coleman, R. E.; Degrador, T. R.; Wang, S.; Baldwin, S. W.; Orr,M. D.; Reiman, R.; Price, D. T. Clin. Positron Imaging 2000, 3,147. https://doi.org/10.1016/S1095-0397(00)00059-5
  9. Degrador, T. R.; Coleman, R. E.; Wang, S.; Baldwin, S. W.; Orr,M. D.; Robertson, C. N.; Polascik, T. J.; Price, D. T. Cancer Res.2001, 61, 110.
  10. Yang, S. D.; Kim, S. W.; Suh, Y. S.; Chun, K. S.; Ahn, S. H.; Hur,M. G.; Lim, S. M.; Hong, S. W.; Yu, K. H. The Kor. J. Nucl. Med.2001, 35, 185.
  11. Hara, T.; Kosaka, N.; Kishi, H. J. Nuc. Med. 2002, 43, 187.
  12. Iwata, R.; Pascali, C.; Bogni, A.; Furumoto, S.; Terasaki, K.;Yanai, K. Appl. Radiat. Isot. 2002, 57, 347. https://doi.org/10.1016/S0969-8043(02)00123-9
  13. Armiger, H.; Sommers, H.; Barnes, J. D. J. Am. Chem. Soc. 1957,79, 3491. https://doi.org/10.1021/ja01570a050
  14. Yu, K. H.; Kim, Y. S.; Kim, S. W.; Park, J. H.; Yang, S. D.;Herdering, W.; Knoechel, A. J. Labeld. Compds. Radiopharm.2003, 29, 1151.

Cited by

  1. Design, synthesis and biological evaluation of choline based SPECT imaging agent: Ga(iii)-DO3A-EA-Choline vol.9, pp.5, 2011, https://doi.org/10.1039/c0ob00506a
  2. Characterization of a Brain Permeant Fluorescent Molecule and Visualization of Aβ Parenchymal Plaques, Using Real-Time Multiphoton Imaging in Transgenic Mice vol.16, pp.14, 2014, https://doi.org/10.1021/ol501264q
  3. Synthesis and Evaluation of F-18 Labeled Pyrido[3,2-B]pyrazine Derivative as a Potential Imaging Agent for Non-Small-Cell Lung Cancer vol.36, pp.7, 2015, https://doi.org/10.1002/bkcs.10335
  4. Synthesis, characterization, and preclinical validation of a PET radiopharmaceutical for interrogating Aβ (β-amyloid) plaques in Alzheimer’s disease vol.5, pp.1, 2015, https://doi.org/10.1186/s13550-015-0112-4
  5. F-based radiotracers for positron emission tomography vol.6, pp.10, 2015, https://doi.org/10.1039/C5MD00303B
  6. Fluselenamyl: A Novel Benzoselenazole Derivative for PET Detection of Amyloid Plaques (Aβ) in Alzheimer’s Disease vol.6, pp.1, 2016, https://doi.org/10.1038/srep35636
  7. Metabolic Stability of [18F]Fluoroalkylbiphenyls vol.25, pp.8, 2004, https://doi.org/10.5012/bkcs.2004.25.8.1225
  8. Potency of Several Structurally Different Acetylcholinesterase Reactivators to Reactivate House Fly and Bovine Acetylcholinesterases Inhibited by Paraoxon and DFP vol.27, pp.9, 2004, https://doi.org/10.5012/bkcs.2006.27.9.1401
  9. Optimization of automated large-scale production of [18F]fluoroethylcholine for PET prostate cancer imaging vol.36, pp.5, 2004, https://doi.org/10.1016/j.nucmedbio.2009.01.004
  10. Dose-on-demand of diverse 18F-fluorocholine derivatives through a two-step microfluidic approach vol.38, pp.5, 2011, https://doi.org/10.1016/j.nucmedbio.2011.01.005