• 제목/요약/키워드: Emission Reduction

검색결과 1,974건 처리시간 0.023초

Non-radial Data Envelopment Analysis를 적용한 지역별 에너지 및 이산화탄소 저감가능성 추정 (Estimating Potential Energy Consumption and Carbon Emission Reduction in South Korea Using Non-radial Data Envelopment Analysis Approach)

  • 김광욱;강상목
    • 자원ㆍ환경경제연구
    • /
    • 제25권2호
    • /
    • pp.299-320
    • /
    • 2016
  • 본 연구는 자료포락분석의 target-setting approach를 기초로 우리나라 16개 지자체의 에너지 효율성을 추정하고, 에너지 효율향상을 통해 저감할 수 있는 에너지 소비수준을 계측한다. 나아가 에너지 믹스변화에 의한 지역별 환경성과를 분석하고 그에 따른 이산화탄소 감축효과를 평가한다. 분석결과, 표본기간 2004년~2013년 동안 평균적으로 14.0%의 에너지 비효율이 존재하며, 특히 석유연료의 비효율적 사용이 주요 광역시를 중심으로 크게 나타났다. 또한 에너지 소비구조의 변화를 통해 에너지 효율향상과 추가적인 이산화탄소 저감가능성이 발생하며, 적극적인 에너지 믹스전략의 필요성을 확인할 수 있었다.

외부가진 오일 버너의 고효율 저 NOx 배출특성 (Emission Characteristic for High Efficiency and Low NOx of Externally Oscillated Oil Burner)

  • 김성천;송형운;전영남
    • 한국대기환경학회지
    • /
    • 제22권5호
    • /
    • pp.693-700
    • /
    • 2006
  • The important factor for the development of burner is the achievement of low emissions with maintaining combustibility. In case of maintaining high temperature flame and excess air to increase the combustibility, it is possible to achieve high combustion efficiency, due to the reduction of UHC(unborn hydrocarbon), carbon monoxide and soot. However, it is difficult to reduce the thermal NOx produced in the high temperature flame. To solve this problem, we developed externally oscillated oil burner which is possible for the high efficiency combustion and low NOx emission, simultaneously. The experiment of flame characteristics and NOx reduction were achieved according to the variation of frequency, amplitude and air velocity. Frequency, amplitude and air velocity are the most important parameter. The optimum operating conditions are frequency 1,900 Hz, amplitude 3 $V_{pp.}$ and air velocity 6.8 m/s. Reduction of NOx and CO are 47% and 22%, respectively.

온실가스배출 감소와 연료절감을 위한 최적 운용절차 방안에 관한 연구 (A Study of Optimized Operation for CO2 Emission and Aircraft Fuel Reduced Operation Procedures)

  • 황정현;이태광;황사식
    • 한국항공운항학회지
    • /
    • 제21권4호
    • /
    • pp.62-70
    • /
    • 2013
  • As the aviation industry looks to the future, fuel saving and $CO_2$ emission reduction play a dominant role in meeting the business challenges presented by global financial uncertainty. The IATA and International Government effort to save fuels, and then save 4 billion gallons of fuel burned, while reducing $CO_2$ emissions by 34 million tons. The various reduction methods adapted airlines and airports. We focused on optimized flight operation procedures for saving fuel and reduction emission cases. IATA and Canada government research reports focused on four methods that Engine Core Washing, Portable Water Management, Single Engine Taxi, APU limit operation. Apply to domestic airlines fuel data, Engine Core washing was saving more than Twenty-four thousand tons $CO_2$ emissions.

Numerical Study on NO Emission with Flue Gas Dilution in Air and Fuel Sides

  • Cho Eun-Seong;Chung Suk Ho
    • Journal of Mechanical Science and Technology
    • /
    • 제19권6호
    • /
    • pp.1358-1365
    • /
    • 2005
  • Flue gas recirculation (FGR) is widely adopted to control NO emission in combustion systems. Recirculated flue gas decreases flame temperature and reaction rate, resulting in the decrease in thermal NO production. Recently, it has been demonstrated that the recirculated flue gas in fuel stream, that is, the fuel induced recirculation (FIR), could enhance much improved reduction in NO per unit mass of recirculated gas, as compared to conventional FGR in air. In the present study, the effect of dilution methods in air and fuel sides on NO reduction has been investigated numerically by using $N_2$ and $CO_2$ as diluent gases to simulate flue gases. Counterflow diffusion flames were studied in conjunction with the laminar flamelet model of turbulent flames. Results showed that $CO_2$ dilution was more effective in NO reduction because of large temperature drop due to the larger specific heat of $CO_2$ compared to $N_2$. Fuel dilution was more effective in reducing NO emission than air dilution when the same recirculation ratio of dilution gas was used by the increase in the nozzle exit velocity, thereby the stretch rate, with dilution gas added to fuel side.

선박부문 온실가스 배출량 산정에 관한 연구 (A Study on the Greenhouse Gas emission from Ships in Korea)

  • 최상진;박성규;장영기;이희관;황의현;봉춘근
    • 대한교통학회지
    • /
    • 제28권6호
    • /
    • pp.33-42
    • /
    • 2010
  • 선박 부문의 경우 UNFCCC에서는 국제해사기구(IMO)를 통해 공해를 운항하는 국제선박의 배출량 산정 및 저감방안에 대하여 논의를 위임하였으며, 이에 IMO에서는 신조선 에너지효율 설계지수 및 현존선 에너지효율 운항지수와 같은 기술적 운항적 측면과 선박에너지효율관리계획서 작성 그리고, $CO_2$ 배출권거래제, 탄소세, 온실가스 펀드 등의 시장 접근적 측면에서 다양한 의견이 제시되고 있다. IMO 보고서(2009)에 의하면 선박에 의한 이산화탄소 배출량은 1,046백만 톤으로 전세계 이산화탄소 배출량에 3.3%에 해당하는 것으로 나타났으며, 이중 국제 운항선박에 의한 이산화탄소 배출량은 870백만 톤으로 2.7%에 해당하는 것으로 나타났다. 이에 본 연구에서는 연료 수급량을 기본으로 한 Tier 1 방법으로 선박에 의한 온실가스 배출량을 산정하였으며, 국내 배출 및 국제 배출을 구분하였다. 2009년 기준 어선, 국적 연안선, 국적 외항선, 외국적선을 포함한 선박에 의한 온실가스 배출량 산정결과 31,646천톤 $CO_2$-eq/년으로 나타났으며, 국적선에 의한 국내 및 국제 배출은 각각 5,398천톤 $CO_2$-eq/년, 7,630천톤 $CO_2$-eq/년 그리고 외국적선에 의한 국제 배출량은 18,618천톤 $CO_2$-eq/년으로 나타났다.

복합재료의 열-음향방출거동 (Thermo-Acoustic Emission Behavior of Composites)

  • 김영복;우성충;최낙삼
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 추계학술발표대회 논문집
    • /
    • pp.111-115
    • /
    • 2001
  • Thermo-acoustic emission (AE) from composite laminates under the repetitive thermal cyclic loads have been quantitatively analyzed in consideration of AE source mechanisms. The repetitive thermal load brought about a large reduction, i.e. an exponential decrease in AE total ringdown counts and AE amplitudes. It was thought that generation of thermo-AE during the first thermal cycle was not caused by crack propagation but by secondary microfracturing due to abrasive contact between crack surfaces.

  • PDF

2단 동축형 Cyclone 연소기를 이용한 저공해 미분탄 연소특성 연구 (A Study on Low Emission Pulverized Coal Combustion in the 2 Staged Coaxial Cyclone Combustor)

  • 최상일;박주식;김성완;김호영
    • 한국연소학회지
    • /
    • 제4권1호
    • /
    • pp.67-83
    • /
    • 1999
  • The objective of this study is development of low emission pulverized coal combustor for reducing pollutant emission generated from coal combustion. Low emission combustion technology for reducing NOx and fly ash was investigated by using 2 stage coaxial cyclone combustor. Staged combustion was employed for NOx reduction and high temperature slagging combustion was also studied for fly ash removal in the combustor. The result of this study shows that the low emission combustion system can reduce the amount of atmospheric pollutions with improved boiler efficiency and performance.

  • PDF

순회배송 물류전략에서 탄소배출 비용의 효과 분석 (The Analysis of Carbon Emission Costs under Milk Run Logistics Strategy)

  • 민대기
    • 한국경영과학회지
    • /
    • 제40권1호
    • /
    • pp.21-33
    • /
    • 2015
  • This paper develops an analytic model for minimizing the cost of distributing items by truck from one supplier to many customers under Milk run logistics strategy. The model derives formulas for not only inventory and transportation costs but also costs associated with carbon emission trading scheme. In addition, monetary investment for reducing carbon emissions is considered. We analyze how to determine optimal shipment size and carbon emission reduction investment. The purpose of this work is to evaluate the effects of carbon emission trading scheme on the Milk run logistics strategy in terms of how much to reduce carbon emissions and/or inventory and transportation costs. We analytically show that it is possible to reduce carbon emissions while reducing inventory and transportation costs by introducing cap-and-trade carbon emission trading scheme under certain conditions.

Characteristics of NOx Emission with Flue Gas Dilution in Air and Fuel Sides

  • Cho, Eun-Seong;Chung, Suk Ho
    • Journal of Mechanical Science and Technology
    • /
    • 제18권12호
    • /
    • pp.2303-2309
    • /
    • 2004
  • Flue gas recirculation (FGR) is a method widely adopted to control NOx in combustion system. The recirculated flue gas decreases flame temperature and reaction rate, resulting in the decrease in thermal NO production. Recently, it has been demonstrated that the recirculated flue gas in fuel stream, that is, the fuel induced recirculation (FIR), could enhance a much improved reduction in NOx per unit mass of recirculated gas, as compared to the conventional FGR in air. In the present study, the effect of FGR/FIR methods on NOx reduction in turbulent swirl flames by using N$_2$ and CO$_2$ as diluent gases to simulate flue gases. Results show that CO$_2$ dilution is more effective in NO reduction because of large temperature drop due to the larger specific heat of CO$_2$ compared to N$_2$ and FIR is more effective to reduce NO emission than FGR when the same recirculation ratio of dilution gas is used.

국내 바이오에너지 보급에 따른 온실가스 저감 평가 (Reduction of Green House Gases by Bioenergy Supplying in Korea)

  • 홍연기
    • 융복합기술연구소 논문집
    • /
    • 제4권1호
    • /
    • pp.15-20
    • /
    • 2014
  • Recently, the development of renewable energy sources in Korea has been needed due to climate change. One of powerful alternative energy resources to mitigate emission is to switch conventional fuels to renewable energy, such as bioenergy. In this study, current status of bioenergy conversion technology and its supply in Korea was investigate. Based on theoretical, technical and realizable potential of biomass in Korea, the amount of reduction of green house gases was estimated. The results shown that the contribution of biomass on 2020 reduction target of green house gases emission in power generation was $513,000\;tCO_2/yr$ and utilization ratio of technical potential of biomass was 6.4%. For the effective supply of bioenergy in Korea, more exact estimation of realizable potential of biomass in Korea and stable supply sources are needed.