• Title/Summary/Keyword: Emission Intensity

Search Result 1,066, Processing Time 0.023 seconds

Patterns of care for patients with nasopharyngeal carcinoma (KROG 11-06) in South Korea

  • Sung, Soo Yoon;Kang, Min Kyu;Kay, Chul Seung;Keum, Ki Chang;Kim, Sung Hwan;Kim, Yeon-Sil;Kim, Won Taek;Kim, Ji-Yoon;Kim, Jin-Hee;Moon, Sung Ho;Ahn, Yong Chan;Oh, Young Taek;Wu, Hong-Gyun;Lee, Chang-Geol;Chung, Woong-Ki;Cho, Kwan Ho;Cho, Moon-June;Choi, Jin Hwa
    • Radiation Oncology Journal
    • /
    • v.33 no.3
    • /
    • pp.188-197
    • /
    • 2015
  • Purpose: To investigate the patterns of care for patients with nasopharyngeal carcinoma (NPC) in South Korea. Materials and Methods: A multi-institutional retrospective study was performed (Korean Radiation Oncology Group [KROG] 11-06) on a total of 1,445 patients from 15 institutions. Results: Of the 1,445 patients, more than half were stages III (39.9%) and IV (35.8%). In addition to patterns of care, we also investigated trends over time with the periods 1988-1993, 1994-2002, and 2003-2011. The frequencies of magnetic resonance imaging and positron emission tomography-computed tomography were markedly increased in the third period compared to previous 2 periods. Concurrent chemoradiation (CCRT) was performed on 894 patients (61.9%), neoadjuvant chemotherapy on 468 patients (32.4%), and adjuvant chemotherapy on 366 patients (25.3%). Of stage II-IV patients, CCRT performed on 78.8% in 2003-2011 compared to 15.0% in 1988-1993. For patients treated with CCRT, cisplatin was the most commonly used agent in 81.3% of patients. Over the periods of time, commonly used radiotherapy (RT) techniques were changed from 2-dimensional RT (1988-1993, 92.5%) to 3-dimensional RT (2003-2011, 35.5%) or intensity-modulated RT (IMRT; 2003-2011, 56.5%). Median RT doses given to primary tumors, high-risk lymphatics, and low-risk lymphatics were 70.0 Gy, 58.1 Gy, and 48.0 Gy, respectively. Adoption of IMRT increased the dose per fraction and escalated total radiation dose. Conclusion: Assessment of the patterns of care for NPC patients in South Korea demonstrated that management for NPC including diagnostic imaging, treatment regimen, RT techniques and dose schedule, advanced in accordance with the international guidelines.

Variations on the Concentration of Dissolved Gaseous Mercury(DGM) at the Juam Reservoir, Korea (주암호의 용존가스상 수은의 농도변화 특성에 관한 연구)

  • Park, Jong-Sung;Oh, Se-Hee;Shin, Mi-Yeon;Yi, Seung-Muk;Zoh, Kyung-Duk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.6
    • /
    • pp.667-676
    • /
    • 2006
  • The reduction of $Hg^{2+}$ in the aqueous phase results in the production of dissolved gaseous mercury(DGM), and the volatilization of DGM has been identified as an important mechanism for the loss of Hg from waterbodies to the atmosphere. Although mercury emission in the world is known to be mostly from Asia, there have been few studies of measuring DGM concentrations in lakes in Asia. In this study, DGM concentrations were measured at Juam reservoir($35^{\cir}00'N,\;127^{\circ}14'E$), Korea. The results showed that the average concentrations of DGM at the upper and down stream of the lake during summer time were $95{\pm}8\;and\;130{\pm}15$ pg/L, respectively and the concentration of total mercury(TM) at the upper and down stream was $2.1{\pm}0.7,\;1.7{\pm}0.3$ ng/L respectively. Average DGM concentration during summer time($101{\pm}14pg/L$) was approximately 5.5 times higher than that during fall($18{\pm}0.1pg/L$). The DGM concentrations ai the midstream decreased from 32 to 13.7 pg/L during rain event, while the TM concentrations increased from 2.2 ng/L to 2.7 ng/L indicating the deposition of mercury from the atmosphere. Also, the diurnal patterns between DGM concentrations and UV intensities were observed. Water temperatures and DOC concentrations were significantly related to DGM concentrations, while TM concentrations were negatively related to DGM concentrations(p<0.0001). Comparing with the study of Dill et al.,(2006) the average concentrations of DGM $(109{\pm}15pg/L)\;and\;TM(2.2{\pm} 0.4ng/L)$ at Juam reservoir were approximately 3 and 2.2 times higher than those measured in other lakes(DGM: $38{\pm}16pg/L$, TM: $1.0{\pm}1.2ng/L$).

Growth and characterization ofZnIn$_2S_4$ single crystal thin film using hot wall epitaxy method (Hot Wall Epitaxy(HWE)에 의한 ZnIn$_2S_4$ 단결정 박막 성장과 특성)

  • 최승평;홍광준
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.11 no.4
    • /
    • pp.138-147
    • /
    • 2001
  • The stochiometric mixtures mixture of evaporating materials for the $ZnIn_{2}S_{4}$ single crystal thin film was prepared from horizontal furnace. To obtain the $ZnIn_{2}S_{4}$ single crystal thin film, $ZnIn_{2}S_{4}$ mixed crystal was deposited on throughly etched semi-insulting GaAs(100) in the Hot Wall Epitaxy(HWE) system. The sourceand substrate temperature were $610^{\circ}C$ and $450^{\circ}C$, respectively and the growth rate of the $ZnIn_{2}S_{4}$ single crystal thin film was about 0.5$\mu\textrm{m}$/hr. The crystalline structure of $ZnIn_{2}S_{4}$ single crystal thin film was investigated by photoluminescence and double crystal X-ray diffraction (DCXD) measurement. The carrier density and mobility of $ZnIn_{2}S_{4}$ single crystal thin film measured from Hal effect by van der Pauw method are $8.51{\times}10^{17}{\textrm}{cm}^{-3}$, 291$\textrm{cm}^2$/V.s at $293^{\circ}$K, respectively. From the photocurrent spectrum by illumination of perpendicular light on the c-axis of the $ZnIn_{2}S_{4}$ single crystal thin film, we have found that the values of spin orbit splitting $\Delta$So and the crystal filed splitting DCr were 0.0148eV and 0.1678 eV at $10^{\circ}$K, respectively. From the photoluminescence measurement of $ZnIn_{2}S_{4}$ single crystal thin film, we observed free excition($E_{X}$) typically observed only in high quality crystal and neutral donor bound exicton ($D^{\circ}$, X) having very strong peak intensity. The full width at half maximum and binding energy of neutral donor bound excition were 9meV and 26meV, respectively. The activation energy of impurity measured by Haynes rule was 130meV.

  • PDF

Structural properties and optical studies of two-dimensional electron gas in Al0.55Ga0.45/GaN heterostructures with low-temperature AlN interlayer (저온 성장 AlN 층이 삽입된 Al0.55Ga0.45N/AlN/GaN 이종접합 구조의 구조적 특성 및 이차원 전자가스의 광학적 특성)

  • Kwack, H.S.;Lee, K.S.;Kim, H.J.;Yoon, E.;Cho, Y.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.1
    • /
    • pp.34-39
    • /
    • 2008
  • We have investigated the characteristics of $Al_{0.55}Ga_{0.45}N$/GaN heterostructures with and without low-temperature (LT) AlN interlayer grown by metalorganic chemical vapor deposition. The structural and optical properties were systematically studied by Rutherford backscattering spectroscopy (RBS), X-ray diffraction (XRD), optical microscopy (OMS), scanning electron microscopy (SEM), and photoluminescence (PL). The Al content (x) of 55% and the structural properties of $Al_xGa_{1-x}N$/GaN heterostructures were investigated by using RBS and XRD, respectively. We carried out OMS and SEM experiments and obtained a decrease of the crack network in $Al_{0.55}Ga_{0.45}N$ layer with LT-AlN interlayer. A two-dimensional electron gas (2DEG)-related PL peak located at ${\sim}3.437eV$ was observed at 10 K for $Al_{0.55}Ga_{0.45}N$/GaN with LT-AlN interlayer. The 2DEG-related emission intensity gradually decreased with increasing temperature and disappeared at temperatures around 100 K. In addition, with increasing the excitation power above 3.0 mW, two 2DEG-related PL peaks were observed at ${\sim}3.411$ and ${\sim}3.437eV$. The observed lower-energy and higher-energy side 2DEG peaks were attributed to the transitions from the sub-band level and the Fermi energy level of 2DEG at the AlGaN/LT-AlN/GaN heterointerface, respectively.

Feasibility of Reflecting Improvement of Tumor Hypoxia by Mild Hyperthermia in Experimental Mouse Tumors with $^18F-Fluoromisonidazole$ (저온온열치료에 의한 종양 내 저산소상태 개선효과를 $^18F$-Fluoromisonidazole의 섭취 변화를 이용한 평가)

  • Lee Sang-wook;Ryu Jin Sook;Oh Seung Joon;Im Ki Chun;Chen Gi Jeong;Lee So Ryung;Song Do Young;Im Soo Jeong;Moon Eun Sook;Kim Jong Hoon;Ahn Seung Do;Shin Seong Soo;Lee Kyeong Ryong
    • Radiation Oncology Journal
    • /
    • v.22 no.4
    • /
    • pp.288-297
    • /
    • 2004
  • Puporse: The aims of this study were to evaluate the change of $[^18F]fluoromisonidazole$($[^18F]FMISO$) uptake in C3H mouse squamous cell carcinoma-VII (SCC-VII) treated with mild hyperthermia ($42^{circ}C$) and nicotinamide and to assess the biodistribution of the markers in normal tissues under similar conditions. Methods and Materials: $[^18F]FMISO$ was producedby our hospital. Female C3H mice with a C3H SCC-VII tumor grown on their extremities were used. Tumors were size matched. Non-anaesthetized, tumor-bearing mice underwent control or mild hyperthermia at $42^{circ}C$ for 60 min with nicotinamide (50 mg/kg i.p. injected) and were examined by gamma counter, autoradiography and animal PET scan 3 hours after tracer i.v. injected with breathing room air, The biodistribution of these agents were obtained at 3 h after $[^18F]FMISO$ injection. Blood, tumor, muscle, heart, lung, liver, kidney, brain, bone, spleen, and intestine were removed, counted for radioactivity and weighed. The tumor and liver were frozen and cut with a cryomicrotome into 10- um sections. The spatial distribution of radioactivity from the tissue sections was determined with digital autoradiography. Results: The mild hyperthermia with nicotinamide treatment had only slight effects on the biodistribution of either marker in normal tissues. We observed that the whole tumor radioactivity uptake ratios were higher in the control mice than in the mild hyperthermia with nicotinamide treated mice for $[^18F]FMISO$ ($1.56{\pm}1.03$ vs. $0.67{\pm}0.30$; p=0.063). In addition, autoradiography and animal PET scan demonstrated that the area and intensity of $[^18F]FMISO$ uptake was significantly decreased. Conclusion: Mild hyperthermla and nicotinamide significantly improved tumor hypoxia using $[^18F]FMISO$ and this uptake reflected tumor hypoxic status.

Characteristics of the Maximum Glow Intensity According to the Thermoluminescent Phosphors used in the Absorbed Dose Measurement of the Radiation Therapy (방사선치료 선량 측정에 사용되는 열형광체에 따른 최대 형광 강도 특성)

  • Kang, Suman;Im, Inchul;Park, Cheolwoo;Lee, Mihyeon;Lee, Jaeseung
    • Journal of the Korean Society of Radiology
    • /
    • v.8 no.4
    • /
    • pp.181-187
    • /
    • 2014
  • The purpose of this study were to analyze the characteristic of the glow curves in order to the glow temperature of the thermoluminescent dosimeters (TLDs) for the absorbed dose measurement of the radiation therapy. In this study, we was used the TLDs of the LiF:Mg${\cdot}$Ti, LiF:Mg${\cdot}$Cu${\cdot}$P, $CaF_2$:Dy, $CaF_2$:Mn (Thermo Fisher Scientific Inc., USA). The source-to-solid dry phantom (RW3 slab, IBA Dosmetry, Germany) surface distance was set at 100 cm, and the exposure dose of 100 MU (monitor unit) was used 6- and 15-MV X-rays, and 6- and 12-MeV electron beams in the reference depth, respectively. After the radiations exposure, we were to analyze the glow curves by using the TL reader (Hashaw 3500, Thermo Fisher Scientific Inc., USA) at the fixed heating rate of $15^{\circ}C/sec$ from $50^{\circ}C$ to $260^{\circ}C$. The glow peaks, the trapping level in the captured electrons and holes combined with the emitted light, were discovered the two or three peak. When the definite increasing the temperature of the TLDs, the maximum glow peak representing the glow temperature was follow as; $LiF:Mg{\cdot}Ti$: $185.5{\pm}1.3^{\circ}C$, $LiF:Mg{\cdot}Ti$: $135.0{\pm}5.1^{\circ}C$, $CaF_2$:Dy: $144.0{\pm}1.6^{\circ}C$, $CaF_2$:Mn: $294.3{\pm}3.8^{\circ}C$, respectively. Because the glow emission probability of the captured electrons depend on the heating temperature after the exposure radiation, TLDs by applying the fixed heating rate, the accuracy of measurement will be able to improve within the absorbed dose measurement of the radiation therapy.