Browse > Article
http://dx.doi.org/10.7742/jksr.2014.8.4.181

Characteristics of the Maximum Glow Intensity According to the Thermoluminescent Phosphors used in the Absorbed Dose Measurement of the Radiation Therapy  

Kang, Suman (Department of Radiological Science, Dong-eui University)
Im, Inchul (Department of Radiological Science, Dong-eui University)
Park, Cheolwoo (Department of Radiological Technology, Dong-eui Institute of Technology)
Lee, Mihyeon (Department of Radiation Safety Management, Dong-pusan College)
Lee, Jaeseung (Department of Radiological Science, Dong-eui University)
Publication Information
Journal of the Korean Society of Radiology / v.8, no.4, 2014 , pp. 181-187 More about this Journal
Abstract
The purpose of this study were to analyze the characteristic of the glow curves in order to the glow temperature of the thermoluminescent dosimeters (TLDs) for the absorbed dose measurement of the radiation therapy. In this study, we was used the TLDs of the LiF:Mg${\cdot}$Ti, LiF:Mg${\cdot}$Cu${\cdot}$P, $CaF_2$:Dy, $CaF_2$:Mn (Thermo Fisher Scientific Inc., USA). The source-to-solid dry phantom (RW3 slab, IBA Dosmetry, Germany) surface distance was set at 100 cm, and the exposure dose of 100 MU (monitor unit) was used 6- and 15-MV X-rays, and 6- and 12-MeV electron beams in the reference depth, respectively. After the radiations exposure, we were to analyze the glow curves by using the TL reader (Hashaw 3500, Thermo Fisher Scientific Inc., USA) at the fixed heating rate of $15^{\circ}C/sec$ from $50^{\circ}C$ to $260^{\circ}C$. The glow peaks, the trapping level in the captured electrons and holes combined with the emitted light, were discovered the two or three peak. When the definite increasing the temperature of the TLDs, the maximum glow peak representing the glow temperature was follow as; $LiF:Mg{\cdot}Ti$: $185.5{\pm}1.3^{\circ}C$, $LiF:Mg{\cdot}Ti$: $135.0{\pm}5.1^{\circ}C$, $CaF_2$:Dy: $144.0{\pm}1.6^{\circ}C$, $CaF_2$:Mn: $294.3{\pm}3.8^{\circ}C$, respectively. Because the glow emission probability of the captured electrons depend on the heating temperature after the exposure radiation, TLDs by applying the fixed heating rate, the accuracy of measurement will be able to improve within the absorbed dose measurement of the radiation therapy.
Keywords
Thermoluminescent dosimeter (TLD); Glow curve; Maximum glow peak; Glow temperature;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 J. Izewska, P. Andreo, S. Vatnitsky, K. R. Shortt, "The IAEA/WHO TLD postal dose quality audits for radiotherapy: a perspective of dosimetry practices at hospitals in developing countries", Radiother. Oncol., Vol. 69, No. 1, pp.91-97, 2003.   DOI   ScienceOn
2 M. Tsuda, Y. Ohizumi, T. Mori, "LiF and CaF2:Dy thermoluminescent dosimeters", Strahlentherapie., Vol. 156, No. 10, pp. 708-713, 1980.
3 M. Kumar, R. K. Kher, G. Sahni, K. Chhokra, "Studies on the response of the TLD badge for high-energy photons", Radiat. Prot. Dosimetry, Vol. 128, No. 3, pp. 266-273, 2008.
4 J. H. Burnett, R. Gupta, U. Griesmann, "Absolute refractive indices and thermal coefficients of CaF2, SrF2, BaF2, and LiF near 157 nm", Appl. Opt., Vol. 41, No. 13, pp. 2508-2513, 2002.   DOI
5 M. Tsuda, T. Katsurada, F. Ando, F. Kawamata, S. Yunogami, "A study of two kinds of thermoluminescent dosimeters; CaF2:Tm and CaSO4:Dy in LiF", Strahlentherapie., Vol. 158, No. 9, pp. 563-569, 1982.
6 J. Izewska, P. Andreo, "The IAEA/WHO TLD postal programme for radiotherapy hospitals", Radiother. Oncol., Vol. 54, No. 1, pp. 65-72, 2000.   DOI   ScienceOn
7 A. Dutreix, E. van der Schueren, S. Derreumaux, J. Chavaudra, "Preliminary results of a quality assurance network for radiotherapy centres in Europe", Radiother. Oncol., Vol. 29, No. 2, pp. 97-101, 1993.   DOI   ScienceOn
8 I. Grmola, J. Dam, J. Isern-Verdum, J. Verstraete, R. Reymen, A. Dutreix, B. Davis, D. Huyskens, "External audits of electron beams using mailed TLD dosimetry: preliminary results", Radiother. Oncol., Vol.58, No. 2, pp. 163-168, 2001.   DOI   ScienceOn
9 V. Correcher, J. M. Gomez-Ros, J. Garcia-Guinea, P. L. Martin, A. Delgado, "Thermal stability of the thermoluminescence trap structure of bentonite", Radiat. Prot. Dosimetry, Vol. 119, No. 1-4, pp. 176-179, 2006.   DOI   ScienceOn
10 A. C. Lewandowski, S. W. McKeever, "Generalized description of thermally stimulated processes without the quasiequilibrium approximation", Phys. Rev. B. Condens. Matter, Vol. 43, No. 10, pp. 8163-8178, 1991.   DOI   ScienceOn
11 A. Hernandez, E. Cruz-Zaragoza, A. Negron-Mendoza, S. Ramos-Bernal, "Dependence of thermoluminescence response of calcium sulphate activated by dysprosium on the temperature irradiation", Radiat. Meas., Vol. 38, No. 4-6, pp. 431-433, 2004.   DOI   ScienceOn
12 J. Y. Je, E. B. Kang, "The effects of magnetic field on TLD glow curve", J. korean Soc. Radiol., Vol. 7, No. 6, pp. 415-418, 2013.   과학기술학회마을   DOI   ScienceOn
13 L. Karsch, E. Beyreuther, T. Burris-Mog, S. Kraft, C. Richter, K. Zeil, J. Pawelke, "Dose rate dependence for different dosimeters and detectors: TLD, OSL, EBT films, and diamond detectors", Med. Phys., Vol. 39, No. 5, pp. 2447-2455, 2012.   DOI   ScienceOn
14 S. B. Scarboro, D. S. Followill, R. M. Howell, S. F. Kry, "Variations in photon energy spectra of a 6 MV beam and their impact on TLD response", Med. Phys., Vol. 38, No. 5, pp. 2619-2628, 2011.   DOI   ScienceOn
15 M. Budzanowski, "The influence of post-exposure heating on the stability of MCP-N (LiF:Mg,Cu,P) TL detectors", Radiat. Prot. Dosimetry, Vol. 101, No. 1-4, pp.257-260, 2002.   DOI   ScienceOn
16 E. Cruz-Zaragoza, P. R. Gonzalez, J.Azorin , C. Furetta, "Heating rate effect on thermoluminescence glow curves of LiF:Mg,Cu,P+PTFE phosphor", Appl. Radiat. Isot., Vol. 69, No. 10, pp.1369-1373, 2011.   DOI   ScienceOn
17 ICRP, "Conversion Coefficients for use in Radiological Protection against External Radiation", Publication No. 74, Ann. ICRP., Vol. 26, 1996.
18 P. Bilski, "Lithium fluoride: from LiF:Mg,Ti to LiF:Mg,Cu,P", Radiat. Prot. Dosimetry, Vol. 100, No. 1-4, pp.199-206. 2002.   DOI   ScienceOn
19 Y. S. Horowitz, A. Horowitz, L. Oster, S. Marino, H. Datz, M. Margaliot, "Investigation of the ionisation density dependence of the glow curve characteristics of LIF:MG,TI (TLD-100)", Radiat. Prot. Dosimetry, Vol. 131, No. 4, pp. 406-413, 2008.   DOI   ScienceOn
20 A. S. Pradhan, "Effect of heating rate on the responses of CaF2:Cu, CaF2:Tm, CaF2:Dy and CaF2:Mn", Radiat. Prot. Dosimetry, Vol. 100, No. 1-4, pp. 289-292, 2002.   DOI   ScienceOn
21 G. Blasse, B. C. Grabmaier, Luminescent Materials, X-Ray Phosphors and Scintillators (Springer, Berlin, Heidelberg), pp. 170-194, 1994.
22 Y. S. Horowitz, L. Oster, H. Datz, "The thermoluminescence dose-response and other characteristics of the high-temperature TL in LiF:Mg,Ti (TLD-100)", Radiat. Prot. Dosimetry, Vol. 124, No. 2, pp. 191-205, 2007.   DOI   ScienceOn
23 J. A. Harvey, N. P. Haverland, K. J. Kearfott, "Characterization of the glow-peak fading properties of six common thermoluminescent materials", Appl. Radiat. Isot., Vol, 68, No. 10, pp. 1988-2000, 2010.   DOI   ScienceOn
24 D. Yossian, S. Gimplin, S. Mahajna, Y. S. Horowitz, "Peak shape analysis of isolated peak 5 in LiF:Mg.Ti following $165^{\circ}C$ post-irradiation annealing", Radiat. Prot. Dosimetry, Vol. 65, No. 1, pp. 173-178, 1996.   DOI   ScienceOn
25 ICRU, "Prescribing, recording and reporting photon beam therapy", Report No. 50, Interntional Commision on Radiation Units and Measurements, Besthesda, M. D., 1993.
26 AAPM, "Quality assurance for clinical radiotherapy treatment planning", Report of the American Association of Physicists in Medicine Radiation Therapy Committee Task Group No. 53, Med. Phys., Vol. 25, pp.1773-1829, 1998.   DOI   ScienceOn
27 AAPM, "Protocol for clinical reference dosimetry of high-energy photon and electron beams", Report of the American Association of Physicists in Medicine Radiation Therapy Committee Task Group No. 51, Med. Phys., Vol. 26, pp.1847-1870. 1999.   DOI   ScienceOn
28 IAEA, "Absorbed dose determination in external beam radiotherapy: An international Code of Practice for dosimetry based on standards of absorbed dose to water", IAEA Technical Report Series 398, International Atomic Energy Agency, Vienna, Austria, 2000.
29 A. Mandowski, "The theory of thermoluminescence with an arbitrary spatial distribution of traps", Radiat. Prot. Dosimetry, Vol. 100, No. 1-4, pp. 115-118, 2002.   DOI   ScienceOn