• Title/Summary/Keyword: Emission Image

Search Result 522, Processing Time 0.024 seconds

Experimental Investigation on Flame Structure and Emission Characteristics in a Lean Premixed Model Gas Turbine Combustor (희박 예혼합 모형 가스터빈 연소기의 화염구조와 배기특성에 관한 실험적 연구)

  • Lee, Jong-Ho;Kim, Dae-Hyun;Jeon, Hung-Hwan;Chang, Young-June
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.4
    • /
    • pp.425-432
    • /
    • 2004
  • The objective of this study is a qualitative comparison between line-integrated OH chemiluminescence(OH$\^$*/) image and its Abel inverted image to investigate the flame structure at different phase of the oscillating pressure field. PIV(Particle Image Velocimetry) measurements were conducted under non-reacting conditions to see the global flow structure and NOx emission was measured to investigate the effect of fuel-air premixing on combustion instability and emission characteristics. Experiments were carried out in an atmospheric pressure, laboratory-scale dump combustor operating on natural gas. Combustion instabilities in present study exhibited a longitudinal mode with a dominant frequency of ∼341.8㎐, which corresponded to a quarter wave mode of combustor. Heat release and pressure waves were in-phase when instability occurred. Results gave an insight about the location where the strong coherence of pressure and heat release existed. Also an additional information on active control to suppress the combustion instabilities was obtained. For lean premixed combustion, strong correlation between OH$\^$*/ and NOx emissions was expected largely due to the exponential dependence of thermal NOx mechanism on flame temperature.

Experimental Investigation on Flame Structure and Emission Characteristics in a Lean Premixed Model Gas Turbine Combustor (희박 예혼합 모형 가스터빈 연소기의 화염구조와 배기특성에 관한 실험적 연구)

  • Moon, Gun-Feel;Lee, Jong-Ho;Jeon, Chung-Hwan;Chang, Young-June
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.356-361
    • /
    • 2003
  • The objective of this study is a qualitative comparison between line-integrated OH chemiluminescence ($OH{\ast}$) image and its Abel inversion image at different phase of the oscillating pressure field. PIV(Particle Image Velocimetry) measurements were conducted under non-reacting conditions to see the global flow structure. Also NOx emission was measured to investigate the effect of fuel-air premixing on combustion instability and emission characteristics. Experiments were carried out in an atmospheric pressure, laboratory-scale dump combustor operating on natural gas. Combustion instabilities in present study exhibited a longitudinal mode with a dominant frequency of ${\sim}341.8$ Hz, which corresponded to a quarter wave mode of combustor. Heat release and pressure waves were in-phase when instability occurred. Results gave an insight about the location where the strong coherence of pressure and heat release existed. Also an additional information on active control to suppress the combustion instabilities was obtained. For lean premixed combustion, strong correlation between $OH{\ast}$ and NOx emissions was expected largely due to the exponential dependence of thermal NOx mechanism on flame temperature.

  • PDF

Effect of Gamma Energy of Positron Emission Radionuclide on X-Ray CT Image (양전자 방출 핵종(18F)의 감마에너지가 X선 CT영상에 미치는 영향)

  • Kim, Gha-Jung;Bae, Seok-Hwan;Kim, Ki-Jin;Oh, Hye-Kyong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.10
    • /
    • pp.4418-4424
    • /
    • 2011
  • This study is aimed to assess the effect of the gamma ray of 511keV energy which is emitted from phantom where the positron emission radionuclide was injected on X-ray CT image. As a scanning method, the CT number and pixel value of the reference image where water was injected(0 mCi), and those acquired by changing the capacity of 18F(Fluorine), positron emission radionuclide, into 1 mCi, 2 mCi, 5 mCi, and 10 mCi were measured. As a result of measuring the CT number(HU) of the phantom image where the positron emission radionuclide($^{18}F$) was injected, there were reference water ($-7.58{\pm}0.66$ HU), 1 mCi($-9.85{\pm}0.50$ HU), 2 mCi($-10.27{\pm}0.21$ HU), 5 mCi($-11.31{\pm}0.66$ HU), and 10 mCi($-13.47{\pm}0.38$ HU). Compared with the image where it was filled with water, there was a reduction of 5.89 Hu in 10 mCi, 3.73 in 5 mCi, 2.69 HU in 2 mCi, and 2 HU in 1 mCi. As for the pixel value of the phantom image, there were reference water ($-2.70{\pm}0.75$), 1 mCi($-4.72{\pm}0.58$), 2 mCi($-6.01{\pm}0.78$), 5 mCi($-6.10{\pm}0.84$), and 10 mCi($-8.20{\pm}0.60$). Compared with the reference image, there was a reduction of 5.50 in 10 mCi, 3.40 in 5 mCi, 3.10 in 2 mCi, and 2.02 in 1 mCi. Through this experiment, it was indicated that, with the increase in the dose of the positron emission radionuclide($^{18}F$), the CT number and the pixel value of the image reduced proportionally, and the width of reduction showed a similar value, too. Accordingly, according to the degree of change in X-ray CT image due to the positron emission radionuclide in the quality control item of PET/CT, the proper standard should be established and it should be periodically managed.

Effect of Nano-Sized Silver Powders in CNT Paste on Field Emission Characteristics of Carbon Nanotube Cathode (탄소나노튜브 캐소드의 전계방출 특성에 미치는 CNT 페이스트용 나노입자 은분말의 영향)

  • An, Young-Je;Lee, Ji-Eon;Shin, Heon-Cheol;Cho, Young-Rae
    • Korean Journal of Materials Research
    • /
    • v.18 no.1
    • /
    • pp.12-17
    • /
    • 2008
  • Carbon nanotube (CNT) cathodes were fabricated using nano-sized silver (Ag) powders as a bonding material between the CNTs and cathode electrodes. The effects of the powder size on the sintering behavior, the current density and emission image for CNT cathodes were investigated. As the diameter of the Ag powders decreases to 10 nm, the sintering temperature of the CNT cathode was lowered primarily due to the higher specific surface area of the Ag powders. In this study, it was demonstrated that nano-sized Ag powders can be feasibly used as a bonding material for a screen-printed CNT cathode, yielding a high current density and a uniform emission image.

Multigrid Wavelet-Based Natural Pixel Method for Image Reconstruction in Emission Computed Tomography

  • Chang je park;Park, Jeong hwan;Cho, Nam-Zin
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05b
    • /
    • pp.705-710
    • /
    • 1998
  • We describe a multigrid wavelet-based natural pixel (WNP) method for image reconstruction in emission computed tomography (ECT). The ECT is used to identify the tagged radioactive material's position in the body for detection of abnormal tissue such as tumor or cancer, as in SPECT and PET. With ECT methodology in parallel beam mode, we formulate a matrix-based reconstruction method for radionuclide sources in the human body. The resulting matrix for a practical problem is very large and nearly singular. To overcome this ill-conditioning, wavelet transform is considered in this study. Wavelets have inherent de-noising and multiscale resolution properties. Therefore, the multigrid wavelet-based natural pixel (WNP) method is very efficient to reconstruct image from projection data that is noisy and incomplete. We test this multigrid wavelet natural pixel (WNP) reconstruction method with the MCNP generated projection data for diagnosis of the simulated cancerous tumor.

  • PDF

Rectified Subspace Analysis of Dynamic Positron Emission Tomography (정류된 부공간 해석을 이용한 PET 영상 분석)

  • Kim, Sangki;Park, Seungjin;Lee, Jaesung;Lee, Dongsoo
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10d
    • /
    • pp.301-303
    • /
    • 2002
  • Subspace analysis is a popular method for multivariate data analysis and is closely related to factor analysis and principal component analysis (PCA). In the context of image processing (especially positron emission tomography), all data points are nonnegative and it is expected that both basis images and factors are nonnegative in order to obtain reasonable result. In this paper We present a sequential EM algorithm for rectified subspace analysis (subspace in nonnegativity constraint) and apply it to dynamic PET image analysis. Experimental results show that our proposed method is useful in dynamic PET image analysis.

  • PDF

Measurement of Fluorescence Signal Strength of NO Particle Using ICCD (ICCD를 이용한 NO입자의 형광신호강도 측정)

  • 전용우;박원주;이광식;이홍식
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.15 no.4
    • /
    • pp.23-30
    • /
    • 2001
  • In this paper, the discharge image of NO particles wire-cylinder type electrode in the discharge reactor where AC dielectric barrier type corona discharge occurred and horizontal and vertical signal intensity at each flourescence emission during discharge and the horizontal and vertical signal strength of NO particles at flourescence emission wavelength band[236[nm], 247[nm]], were measured were measured by ICCD Camera. In addition discharge images and signal intensities in accordance with discharge time were measured to figure out the discharge mechanism. It was found that the strongest horizontal and vertical signal intensity of NO particles were observed at 247[nm] band, but no big difference in the horizontal and vertical signal intensity in accordance with discharge time was seen. In particular, the phenomenon image occuring inside the discharge reactor and wavelength ware able to be carried based on the measured data.

  • PDF

Feasibility study of improved median filtering in PET/MR fusion images with parallel imaging using generalized autocalibrating partially parallel acquisition

  • Chanrok Park;Jae-Young Kim;Chang-Hyeon An;Youngjin Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.222-228
    • /
    • 2023
  • This study aimed to analyze the applicability of the improved median filter in positron emission tomography (PET)/magnetic resonance (MR) fusion images based on parallel imaging using generalized autocalibrating partially parallel acquisition (GRAPPA). In this study, a PET/MR fusion imaging system based on a 3.0T magnetic field and 18F radioisotope were used. An improved median filter that can set a mask of the median value more efficiently than before was modeled and applied to the acquired image. As quantitative evaluation parameters of the noise level, the contrast to noise ratio (CNR) and coefficient of variation (COV) were calculated. Additionally, no-reference-based evaluation parameters were used to analyze the overall image quality. We confirmed that the CNR and COV values of the PET/MR fusion images to which the improved median filter was applied improved by approximately 3.32 and 2.19 times on average, respectively, compared to the noisy image. In addition, the no-reference-based evaluation results showed a similar trend for the noise-level results. In conclusion, we demonstrated that it can be supplemented by using an improved median filter, which suggests the problem of image quality degradation of PET/MR fusion images that shortens scan time using GRAPPA.

Selective Growth of Multi-walled Carbon Nanotubes by Thermal Chemical Vapor Deposition and Their Field Emission Characteristics

  • Jeong, Se-Jeong;Lee, Seung-Hwan;Lee, Nae-Sung;Han, In-Taek;Kim, Ha-Jin;Kim, Jong-Min
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1096-1099
    • /
    • 2005
  • Multi-walled carbon nanotubes (CNTs) grown on catalyst dots by thermal chemical vapor deposition were vertically aligned with a high population density. Such densely populated CNTs showed poor field emission characteristics due to the electrical screening effect. We reduced the number density of CNTs using an adhesive tape treatment. For dotpatterned CNTs, the tape treatment decreased the CNT density by three orders of magnitude, drastically improved the turn-on electric field from 4.8 to $1.8V/{\mu}m$, and changed the emission image from spotty to uniform luminescence. We also report long-term emission stability of dot-patterned CNTs by measuring the emission currents with time at different duty ratios.

  • PDF

Field Emission from Selectively-patterned ZnO Nanorods Synthesized by Solution Chemistry Route

  • Kim, Do-Hyung
    • Korean Journal of Materials Research
    • /
    • v.16 no.7
    • /
    • pp.408-411
    • /
    • 2006
  • An effective wet-chemical approach is demonstrated for growing large-area, selectively-patterned, and low-temperature-synthesized ZnO nanorods (ZNRs). The growth of ZNRs was enhanced on a Co layer. The selectivity and density were readily controlled by the control of the temperature when the substrate transfers into aqueous solution. The cross-sectional transmission electron microscopy image shows that single crystalline ZNRs grown along [0001] have good adhesion at interface between ZNRs/substrate. The turn-on field was 4 $V/{\mu}m$ at the emission current density of 1 ${\mu}A/cm^2$. The stable emission was obtained at 0.11 $mA/cm^2$ under 7.2 $V/{\mu}m$ over 10 hr. These results suggest that selectively-patterned ZNRs have the potential for use as field emitters in large-area field emission displays.