• Title/Summary/Keyword: Emission Image

Search Result 523, Processing Time 0.027 seconds

개인용 컴퓨터를 이용한 뇌 합성영상에 대한 재구성

  • Min, Hyeong-Gi;Nam, Sang-Hui
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.3 no.1
    • /
    • pp.110-118
    • /
    • 1997
  • Recently, to make a diagnosis of the patient different X-Ray examinations are used. To name a few, Computed Tomography(CT). Magnetic Resonance Image(MRI) Single Photon Emission Computed Tomography(SPET) and Positron Emission Tomography(PET). But diagnosticians face difficulties sometimes when they make a diagnosis with images from those examinations. One of the problem is whether the Lesions of the patient is captured in the image correctly. Another one is whether the images are taken with same angle. in this paper, a study 9 on the method to obtain the hybrid image from the different images to different examinations. The procedure done in this paper is described as future study. Although small errors in position between images would occurred, this method more useful as it does not make patients in convenient. To reconstruct a image, some images are scanned by scanner and stored to personal computer for further image processing with Aldus photostyler program. The method to generate a sharpened image are also described.

  • PDF

Reduction of Temporal Image Sticking in AC Plasma Display Panels through the Use of High He Contents

  • Park, Choon-Sang;Kim, Sun-Ho;Kim, Jae-Hyun;Tae, Heung-Sik
    • Journal of Information Display
    • /
    • v.10 no.4
    • /
    • pp.195-201
    • /
    • 2009
  • The temporal dark- and bright-image sticking phenomena were examined relative to the He contents under 11% Xe content in the 50-in HD and FHD AC-PDPs with a ternary gas mixture (Xe-He-Ne). To compare the temporal dark- and bright-image sticking phenomena under various He contents, the differences in the disappearing time, display luminance, perceived luminance, infrared emission, color coordinate, color temperature, and discharge current before and after discharge were measured under 0, 35, 50, and 70% He contents. It was found that temporal dark- and bright-image sticking were reduced in proportion to the increase in He %. Thus, a high He content contributes to the reduction of temporal dark- and bright-image sticking.

Fast Image Reconstruction for Positron Emission Tomography Using Time-Of-Flight Information (양전자 방출 단층 촬영기의 비행 시간 정보를 이용한 고속 영상재구성)

  • Lee, Nam-Yong
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.6
    • /
    • pp.865-872
    • /
    • 2017
  • Recent advance in electronics and scintillators makes it possible to utilize the time-of-flight (TOF) information in improving image reconstruction of positron emission tomography(PET). In this paper, we propose a TOF-based fast image reconstruction method for PET. The proposed method uses the deconvolution of TOF data for each angle view and the rotational averaging of deconvolved images. Simulation results show an improved performance of the proposed method, as compared with filtered backprojection (FBP) method, TOF-FBP, and TOF version of expectation-maximization(EM) methods. Simulation results also show a great potentiality of the proposed method in limited angle tomography applications.

IMAGE SIMULATIONS FOR THE KVN USING THE VLBA IMAGE OF SiO MASERS (SiO MASERS의 VLBA 이미지를 이용한 KVN 이미지 모의실험)

  • Yi, Ji-Yune;Jung, Tae-Hyun
    • Publications of The Korean Astronomical Society
    • /
    • v.23 no.2
    • /
    • pp.37-45
    • /
    • 2008
  • We present the results of image simulations of 43.1 GHz SiO maser emission toward a Mira variable using the KVN (Korean VLBI Network) and other facilities which can make joint VLBI experiments with the KVN. To test the imaging capability of the KVN we used the image of SiO masers in the simulation obtained by the VLBA, which is considered to be the optimum VLBI facility at present to study SiO masers toward evolved stars. The simulated images of SiO maser emission confirm that coordinate VLBI expriments of KVN with several more stations in Japan or in the neighborhood of Korean Peninsula are necessary to exert the functional benefit of the KVN as the first mm VLBI facility which can perform simultaneous observations at four different frequency bands.

A Study on Virtual Reality Management of 3D Image Information using High-Speed Information Network (초고속 정보통신망을 통한 3차원 영상 정보의 가상현실 관리에 관한 연구)

  • Kim, Jin-Ho;Kim, Jee-In;Chang, Chun-Hyon;Song, Sang-Hoon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.12
    • /
    • pp.3275-3284
    • /
    • 1998
  • In this paper, we deseribe a Medical Image Information System. Our system stores and manages 5 dimensional medical image data and provides the 3 dimensional medical data via the Internet. The Internet standard VR format. VRML(Virtual Reality Modeling Language) is used to represent the 3I) medical image data. The 3D images are reconstructed from medical image data which are enerated by medical imaging systems such ans CT(Computerized Tomography). MRI(Magnetic Resonance Imaging). PET(Positron Emission Tomograph), SPECT(Single Photon Emission Compated Tomography). We implemented the medical image information system shich rses a surface-based rendering method for the econstruction of 3D images from 2D medical image data. In order to reduce the size of image files to be transfered via the Internet. The system can reduce more than 50% for the triangles which represent the surfaces of the generated 3D medical images. When we compress the 3D image file, the size of the file can be redued more than 80%. The users can promptly retrieve 3D medical image data through the Internet and view the 3D medical images without a graphical acceleration card, because the images are represented in VRML. The image data are generated by various types of medical imaging systems such as CT, MRI, PET, and SPECT. Our system can display those different types of medical images in the 2D and the 3D formats. The patient information and the diagnostic information are also provided by the system. The system can be used to implement the "Tele medicaine" systems.

  • PDF

Characteristics of methane and propane leaking gas images (methane과 propane의 누출 Optical Gas Image의 특성연구)

  • Park, Suri;Han, Sang-wook;Kim, Byung-jick
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.4
    • /
    • pp.28-39
    • /
    • 2019
  • In this paper is image characteristics of main gas can be a basic data for the identification of the type of leaking gas and the estimation of the emission quantity in OGI(Optical Gas Image) technology. The purpose of this research is to observe the differences of leaking gas images of the two important hydrocarbons of methane and propane in the industry. We fabricated a wind shield of quartz-based with infrared-permeable properties was prepared and methane and propane were simultaneous emission and then photographed with an infrared OGI camera and we are analyzed it. We have a stable image with windbreak of quartz-based minimizes the effect of wind. As a result of analyzing the image of two hydrocarbons with a leakage gas reference value of 1 L/min, an easily recognizable distances by OGI camera were 6 m for methane and 9 m for propane. In the distances range of 1 to 10 m between the infrared camera and the leaking gas point, the gas plume size of the propane gas was larger and clear than that of the methane gas plume. Compared with the number of points in the image, propane was 3.8 times more than methane.

Study on Image Retention in an AC Plasma Display Panel

  • Kim, Sang-Ho;Choi, Kyung-Cheol;Shin, Bhum-Jae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.259-262
    • /
    • 2005
  • Image retention is a kind of fatal shortcoming of the AC PDPs for realizing high-quality picture. In this work, the measurement method of image retention was proposed using temporal measurement of luminance, CIEXYZ tristimulus values, IR emission of reset pulse, and temperaturel. On the base of temporal measurement of luminance, CIEXYZ tristimulus value, and IR emission of reset pulse, the retention time of Ne+5%Xe gas-mixture discharge was about 2 hours after white window image. However, it was about 20 minute on the base of temporal measurement of temperature.

  • PDF

Basic Physical Principles and Clinical Applications of Computed Tomography

  • Jung, Haijo
    • Progress in Medical Physics
    • /
    • v.32 no.1
    • /
    • pp.1-17
    • /
    • 2021
  • The evolution of X-ray computed tomography (CT) has been based on the discovery of X-rays, the inception of the Radon transform, and the development of X-ray digital data acquisition systems and computer technology. Unlike conventional X-ray imaging (general radiography), CT reconstructs cross-sectional anatomical images of the internal structures according to X-ray attenuation coefficients (approximate tissue density) for almost every region in the body. This article reviews the essential physical principles and technical aspects of the CT scanner, including several notable evolutions in CT technology that resulted in the emergence of helical, multidetector, cone beam, portable, dual-energy, and phase-contrast CT, in integrated imaging modalities, such as positron-emission-tomography-CT and single-photon-emission-computed-tomography-CT, and in clinical applications, including image acquisition parameters, CT angiography, image adjustment, versatile image visualizations, volumetric/surface rendering on a computer workstation, radiation treatment planning, and target localization in radiotherapy. The understanding of CT characteristics will provide more effective and accurate patient care in the fields of diagnostics and radiotherapy, and can lead to the improvement of image quality and the optimization of exposure doses.

White Electroluminescent Device by ZnS: Mn, Cu, Cl Phosphors

  • Kim, Jong-Su;Park, Je-Hong;Lee, Sung-Hun;Kim, Gwang-Chul;Kwon, Ae-Kyung;Park, Hong-Lee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.5 no.3 s.16
    • /
    • pp.1-4
    • /
    • 2006
  • White-light-emitting ZnS:Mn, Cu, Cl phosphors with spherical shape and the size of $20\;{\mu}m$ are successfully synthesized. They have the double phases of cubic and hexagonal structures. They are applied to electroluminescent (EL) devices by silk screen method with the following structure: $electrode/BaTiO_3$ insulator layer ($50{\sim}60\;{\mu}m$)/ ZnS:Mn, Cu, Cl phosphor layer ($30{\sim}50\;{\mu}m$)/ITO glass. The EL devices are driven with the voltage of 100 V and the frequency of 400 Hz. The EL devices show the three emission peaks. The blue and green emission bands are originated from $CICu^{2+}$ transition and $ClCu^+$ transition, respectively. The yellow emission band results from $^4T^6A$ transition of $Mn^{2+}$ ion. As an increase of Cu concentrations, the blue and green emission intensities decrease whereas the yellow emission intensity increases; the quality becomes warm white. It is due to the energy transfer from the blue and green bands to the yellow band.

  • PDF

The feasibility of algorithm for iterative metal artifact reduction (iMAR) using customized 3D printing phantom based on the SiPM PET/CT scanner (SiPM PET/CT에서 3D 프린팅 기반 자체제작한 팬텀을 이용한 iMAR 알고리즘 유용성 평가에 관한 연구)

  • Min-Gyu Lee;Chanrok Park
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.28 no.1
    • /
    • pp.35-40
    • /
    • 2024
  • Purpose: To improve the image quality in positron emission tomography (PET), the attenuation correction technique based on the computed tomography (CT) data is important process. However, the artifact is caused by metal material during PET/CT scan, and the image quality is degraded. Therefore, the purpose of this study was to evaluate image quality according to with and without iterative metal artifact reduction (iMAR) algorithm using customized 3D printing phantom. Materials and Methods: The Hoffman and Derenzo phantoms were designed. To protect the gamma ray transmission and express the metal portion, lead substance was located to the surface. The SiPM based PET/CT was used for acquisition of PET images according to application with and without iMAR algorithm. The quantitative methods were used by signal to noise ratio (SNR), coefficient of variation (COV), and contrast to noise ratio (CNR). Results and Discussion: The results shows that the image quality applying iMAR algorithm was higher 1.15, 1.19, and 1.11 times than image quality without iMAR algorithm for SNR, COV, and CNR. Conclusion: In conclusion, the iMAR algorithm was useful for improvement of image quality by reducing the metal artifact lesion.