• Title/Summary/Keyword: Emission Control

Search Result 1,565, Processing Time 0.028 seconds

Characteristics of Noise Emission from Wind Turbine Generator According to Methods of Power Regulation (파워 조절 방법에 따른 풍력 터번 발전기의 방사 소음 특성)

  • Jung, Sung-Soo;Cheung, Wan-Sup;Shin, Su-Hyun;Chun, Se-Jong;Choi, Yong-Moon;Cheong, Cheol-Ung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.941-945
    • /
    • 2006
  • In the development of electricity generating wind turbines for wind farm application, only two types have survived as the methods of power regulation; stall regulation and fun span pitch control. The sound measurement procedures of IEC 61400-11 are applied to field test and evaluation of noise emission from each of 1.5 MW and 660 kW wind turbine generators (WTG) utilizing the stall regulation and the pitch control for the power regulation, respectively. Apparent sound power level, wind speed dependence and third-octave band levels are evaluated for both of WTGs. It is found that while 1.5 MW WTG using the stall control is found to emit lower sound power than 660 kW one using the pitch control at low wind speed (below 8 m/s), sound power from the former becomes greater than that of the latter in the higher wind speed. Equivalent continuous sound pressure levels (ECSPL) of the stall control type of WTG vary more widely with wind speed than those of the pitch control type of WTG These characteristics are believed to be strongly dependent on the basic difference of the airflow around the blade between the stall regulation and the pitch control types of WTG. These characteristics according to the methods of power regulation lead to the very different noise emission characteristics of WTG depending on the seasons because the average wind speed in summer is lower than the critical velocity over which the airflow on the suction side of blade in the stall types of WT are separated. These results propose that, in view of environmental noise regulation, the developer of wind farm should give enough considerations to the choice of power regulation of their WTG based on the weather conditions of potential wind farm locations.

  • PDF

The Effect of Fuel Injection Timing on the Combustion and Emission Characteristics of a Natural Gas Fueled Engine at Part Loads

  • Cho, Haeng-Muk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.7
    • /
    • pp.1013-1018
    • /
    • 2008
  • For a sequential port fuel injection natural gas engine, its combustion and emission characteristics at low loads are crucial to meet light duty vehicle emission regulations. Fuel injection timing is an important parameter related to the mixture formation in the cylinder. Its effect on the combustion and emission characteristics of a natural gas engine were investigated at 0.2 MPa brake mean effective pressure (BMEP)/2000 rpm and 0.26 MPa BMEP/1500 rpm. The results show that early fuel injection timing is beneficial to the reduction of the coefficient of variation (COV) of indicated mean effective pressure (IMEP) under lean burn conditions and to extending the lean burn limits at the given loads. When relative air/fuel ratio is over 1.3, fuel injection timing has a relatively large effect on engine.out emissions. The levels of NOx emissions are more sensitive to the fuel injection timing at 0.26 MPa BMEP/1500 rpm. An early fuel injection timing under lean burn conditions can be used to control engine out NOx emissions.

A Study on Mercury Emission Factor for Environmental Impact Assessment of Municipal Waste Incinerator (소각장 환경영향평가시 수은 배출 계수에 관한 연구)

  • Chun, Mee-Kyung;Park, Seok-Soon
    • Journal of Environmental Impact Assessment
    • /
    • v.7 no.2
    • /
    • pp.113-125
    • /
    • 1998
  • The amount of mercury emitted from an incinerator depends on the properties of waste, combustion condition, and control devices. Mercury concentration in air proportionates to the increase of incinerator installation. The purpose of this study is to provide a method for determination of mercury emission factor which can predict the amount of mercury emitted from each incinerator specifically. Case study was performed for N municipal waste incinerator. Based on the method presented in this paper, we obtained mercury emission factor as 1.85~1.95 g Hg/t at N Municipal Waste Incinerator and this result was regarded as reasonable when compared with existing mercury emission factor in reference cases. Fluorescent lamps turned out to be the most important source(44.4%) of mercury in municipal waste and its amount will tend to increase, while batteries become less significant. In addition, medical waste is one of the major source of mercury.

  • PDF

White Light Emission with Quantum Dots: A Review

  • Kim, Nam Hun;Jeong, Jaehak;Chae, Heeyeop
    • Applied Science and Convergence Technology
    • /
    • v.25 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • Quantum dots (QDs) are considered as excellent color conversion and self-emitting materials for display and lighting applications. In this article, various technologies which can be used to realize white light emission with QDs are discussed. QDs have good color purity with a narrow emission spectrum and tunable optical properties with size control capabilities. For white light emission with a color-conversion approach, QDs are combined with blue-emitting inorganic and organic light-emitting diodes (LED) to generate white emission with high energy conversion efficiency and a high color rendering index for various display and lighting applications. Various device structures for self-emitting white QD light-emitting diodes (QD-LED) are also reviewed. Various stacking and patterning technologies are discussed in relation to QD-LED devices.

Field Emission from Selectively-patterned ZnO Nanorods Synthesized by Solution Chemistry Route

  • Kim, Do-Hyung
    • Korean Journal of Materials Research
    • /
    • v.16 no.7
    • /
    • pp.408-411
    • /
    • 2006
  • An effective wet-chemical approach is demonstrated for growing large-area, selectively-patterned, and low-temperature-synthesized ZnO nanorods (ZNRs). The growth of ZNRs was enhanced on a Co layer. The selectivity and density were readily controlled by the control of the temperature when the substrate transfers into aqueous solution. The cross-sectional transmission electron microscopy image shows that single crystalline ZNRs grown along [0001] have good adhesion at interface between ZNRs/substrate. The turn-on field was 4 $V/{\mu}m$ at the emission current density of 1 ${\mu}A/cm^2$. The stable emission was obtained at 0.11 $mA/cm^2$ under 7.2 $V/{\mu}m$ over 10 hr. These results suggest that selectively-patterned ZNRs have the potential for use as field emitters in large-area field emission displays.

The Effects of NOx Emission Reductions from Power Plants over the Eastern United States

  • Ghim, Young-Sung;Chang, Young-Soo;David G. Streets
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.E
    • /
    • pp.45-54
    • /
    • 1999
  • The effectiveness of NOx emission reductions from power plants to alleviate persistent ozone nonattainment in the esterm Unites States was investigated with a focus on the Northeast Corridor, centered on New York City. The 1995 ozone episode along with the 2007 base case emission scenario was used with the Variable-Grid Urban Airshed Model(UAM-V) to determine ozone concentrations. Several scenarios based on EPA's proposal issued on October 10, 1997 were examined. Although it is widely recognized that the eastern United States includes a large Nox-sensitive region(e.g., Sillman, 1999), the study revealed that reducing NOx emissions from power plants beyond 500 miles (800km) was not effective for reducing ozone exceedances in the region. It was also found that NOx emissions from power plants play an important role in local ozone exceedances.

  • PDF

The Characteristics of Combustion and Exhaust Emission according to Operating Condition and Fuel Composition in a Direct Injection Type HCCI Diesel Engine (직분식 예혼합 압축착화 디젤엔진의 운전조건과 연료조성에 따른 연소 및 배기 특성)

  • 이기형;류재덕;이창식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.10-16
    • /
    • 2004
  • The Homogeneous Charge Compression Ignition (HCCI) engine has advantage for reducing the NOx and P.M. simultaneously. Therefore, HCCI engine is receiving attention as a low emission diesel engine concept. This study was carried out to investigate the characteristics of combustion and exhaust emission for operating conditions in a direct injection type of HCCI engines such as supercharged and naturally aspirated using diesel fuel and additive. From the experimental result, we found that cool flame was always appeared and also it was difficult to control combustion characteristics by changing the injection timing in HCCI. In addition, at the lean air-fuel ratio and high speed range, it was observed that charging air pressure, additive or increasing intake air temperature is effective to increase combustion performance and reduce exhaust emission. We concluded that chemical reaction by the increasing intake air temperature or additive without physical improvement has limitation for reduction of exhaust emission.

A Simulation on the Stream and NOx Characteristics by EGR Rate Control (EGR율 제어에 따른 유동 및 NOx 특성에 관한 시뮬레이션)

  • 한영출;오용석;오상기
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.93-98
    • /
    • 2002
  • It is a present situation that the control on automobile emission is getting more restrictive and also the regulations for emission are changing greatly up to level of those advanced foreign countries. Specially, it has been many years that exhaust gases from gasoline automobile rather than from diesel is the major object concerned by Korea and other countries, and it is strongly required on the reduction techniques on harmful NOx and PM among those compositions. Thus, this research focused on the Exhaust Gas Recirculation (EGR) and the target fur this research is heavy-duty turbo-diesel engine with EGR, and conducted with numerical simulation to get engine performance and the characteristics of emission. Furthermore. the results obtained under different conditions such as rpm, power, EGR rate are compared and investigated with the numerical simulation using KIVA-3.

Power conversion control for zero emission buildings (탄소제로 빌딩을 위한 전력변환 제어)

  • Han, Seok-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.504-505
    • /
    • 2011
  • Decreasing actual greenhouse gas will be difficult if it is not solved addressed in architectural fields. Zero emission building or zero energy building, maximize the efficiency of energy, which means the building can operate by their own renewable energy facility without any other supplying. To be a zero emission building, a building needs realization of high efficiency low energy consumption, construction of building its own energy production facilities and lastly a power grid connection. According to increasing of DC load about TV, LED lighting, computer, IT in building for living and business, it is expected the save of energy when the system of AC power distribution change into the system of DC power distribution. Renewable energy exists a big different rate produced by outside environment. When electrical power overproduce, it can supply for system. Otherwise, if electrical power produce less, it can receive supply from system. Send and receive power can lead to zero to annual standard. This paper shows the simulation about efficient control of power conversion which is related to DC power distribution of architecture and DC output of renewable energy by using L-type converter.

  • PDF