Browse > Article
http://dx.doi.org/10.5757/ASCT.2016.25.1.1

White Light Emission with Quantum Dots: A Review  

Kim, Nam Hun (School of Chemical Engineering, Sungkyunkwan University (SKKU))
Jeong, Jaehak (SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University (SKKU))
Chae, Heeyeop (School of Chemical Engineering, Sungkyunkwan University (SKKU))
Publication Information
Applied Science and Convergence Technology / v.25, no.1, 2016 , pp. 1-6 More about this Journal
Abstract
Quantum dots (QDs) are considered as excellent color conversion and self-emitting materials for display and lighting applications. In this article, various technologies which can be used to realize white light emission with QDs are discussed. QDs have good color purity with a narrow emission spectrum and tunable optical properties with size control capabilities. For white light emission with a color-conversion approach, QDs are combined with blue-emitting inorganic and organic light-emitting diodes (LED) to generate white emission with high energy conversion efficiency and a high color rendering index for various display and lighting applications. Various device structures for self-emitting white QD light-emitting diodes (QD-LED) are also reviewed. Various stacking and patterning technologies are discussed in relation to QD-LED devices.
Keywords
White light emitting diode; Quantum dots; Photoluminescence; Electroluminescence;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Pimputkar, J.S. Speck, S.P. DenBaars, and S. Nakamura, Nat. Photonics 3, 180 (2009).   DOI
2 Z. Yang, X. Li, Y. Yang, X. Li, and J. Lumin. 707, 122-123 (2007).
3 N. C. George, K.A. Denault, and R. Seshadri, Annu. Rev. Mater. Res. 43, 481 (2013).   DOI
4 K. Marrin, LEDs Magazine 10, 41 (2013).
5 U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, Nat. Methods 5, 763 (2008).   DOI
6 V. Wood and V. Bulovic, Nano Rev. 1, 5202 (2010).   DOI
7 S. Kim, S. H. Im, and S. W. Kim, Nanoscale 5, 5205 (2013).   DOI
8 C. B. Murray, D. J. Norris, and M. G. Bawendi, J. Am. Chem. Soc. 115, 8706 (1993).   DOI
9 J. Lee, V. C. Sundar, J. R. Heine, M. G. Bawendi, and K. F. Jensen, Adv. Mater. 12, 1311 (2000).
10 E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, and Y. Kim, Adv. Mater. 22, 3076 (2010).   DOI
11 S. Nizamoglu, E. Mutlugun, T. Ozel, H.V. Demir, S. Sapra, and N. Gaponik, A. Eychmuller, Appl. Phys. Lett. 92, 113110 (2008).   DOI
12 W.-S. Song, and H. Yang, Chem. Mater. 24, 1961 (2012).   DOI
13 D.-Y. Jo, H. Yang, and J. Lumin. 166, 227 (2015).   DOI
14 S. Jun, J. Lee, and E. Jang, ACS Nano 7, 1472 (2013).   DOI
15 J.-H. Jo, J.-H. Kim, S.-H. Lee, H. S. Jang, D. S. Jang, J. C. Lee, K. U. Park, Y. Choi, C. Ha, and H. Yang, J. Alloys Compd. 647, 6 (2015).   DOI
16 P. O. Anikeeva, J. E. Halpert, M. G. Bawendi, and V. Buloviae, Nano Lett. 7, 2196 (2007).   DOI
17 A. Rizzo, M. Mazzeo, M. Biasiucci, R. Cingolani, and G. Gigli, Small 4, 2143 (2008).   DOI
18 J. S. Steckel, P. Snee, S. Coe-Sullivan, J. P. Zimmer, J.E. Halpert, P. Anikeeva, L. A. Kim, V. Bulovic, and M. G. Bawendi, Angewandte Chemie International Edition 45, 5796 (2006).   DOI
19 S. Coe-Sullivan, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology Ph.D. (2005).
20 W. K. Bae, J. Lim, D. Lee, M. Park, H. Lee, J. Kwak, K. Char, C. Lee, and S. Lee, Adv. Mater. 26, 6387 (2014).   DOI
21 C.-Y.H. Ki-Heon Lee, Hee-Don Kang, Heejoo Ko, Changho Lee, Jonghyuk Lee, NoSoung Myoung, Sang-Youp Yim, and Heesun Yang, ACS Nano, 10.1021/acsnano.5b05513 (2015).
22 J. H. Kim, K. H. Lee, H. D. Kang, B. Park, J. Y. Hwang, H. S. Jang, Y. R. Do, and H. Yang, Nanoscale 7, 5363 (2015).   DOI
23 T. H. Kim, D. Y. Chung, J. Ku, I. Song, S. Sul, D. H. Kim, K.S. Cho, B. L. Choi, J. Min Kim, S. Hwang, and K. Kim, Nat. Commun. 4, 2637 (2013).   DOI
24 X. Feng, M. A. Meitl, A. M. Bowen, Y. Huang, R. G. Nuzzo, and J. A. Rogers, Langmuir 23, 12555 (2007).   DOI
25 M. A. Meitl, Z.-T. Zhu, V. Kumar, K.J. Lee, X. Feng, Y.Y. Huang, I. Adesida, R.G. Nuzzo, and J. A. Rogers, Nat. Mater. 5, 33 (2005).
26 L. Li, A. Pandey, D. J. Werder, B.P. Khanal, J. M. Pietryga, and V. I. Klimov, J. Am. Chem. Soc. 133, 1176 (2011).   DOI
27 B. Chen, H. Zhong, M. Wang, R. Liu, and B. Zou, Nanoscale 5, 3514 (2013).   DOI
28 P. H. Chuang, C. C. Lin, and R. S. Liu, ACS Appl. Mater. Interfaces 6, 15379 (2014).   DOI
29 T.-H. Kim, K.-S. Cho, E.K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, S. Y. Lee, B.L. Choi, Y. Kuk, J. M. Kim, and K. Kim, Nat. Photonics 5, 176 (2011).   DOI
30 K. Yu and Y. Han, Soft Matter 2, 705 (2006).   DOI
31 W. Cheng, N. Park, M.T. Walter, M.R. Hartman, and D. Luo, Nat. Nanotechnol. 3, 682 (2008).   DOI
32 A. C. Arango, D. C. Oertel, Y. F. Xu, M. G. Bawendi, and V. Bulovic, Nano Lett. 9, 860 (2009).   DOI
33 K. J. Hsia, Y. Huang, E. Menard, J. U. Park, W. Zhou, J. Rogers, and J. M. Fulton, Appl. Phys. Lett. 86, 154106 (2005).   DOI
34 T. Sekitani, H. Nakajima, H. Maeda, T. Fukushima, T. Aida, K. Hata, and T. Someya, Nat. Mater. 8, 494 (2009).   DOI
35 M. K. Choi, J. Yang, K. Kang, D. C. Kim, C. Choi, C. Park, S. J. Kim, S. I. Chae, T. H. Kim, J. H. Kim, T. Hyeon, and D. H. Kim, Nat. Commun. 6, 7149 (2015).   DOI
36 R. H. Kim, D. H. Kim, J. L. Xiao, B. H. Kim, S. I. Park, B. Panilaitis, R. Ghaffari, J. M. Yao, M. Li, Z. J. Liu, V. Malyarchuk, D. G. Kim, A. P. Le, R. G. Nuzzo, D. L. Kaplan, F. G. Omenetto, Y. G. Huang, Z. Kang, and J. A. Rogers, Nat. Mater. 9, 929 (2010).   DOI
37 M. S. White, M. Kaltenbrunner, E. D. Glowacki, K. Gutnichenko, G. Kettlgruber, I. Graz, S. Aazou, C. Ulbricht, D. A. M. Egbe, M. C. Miron, Z. Major, M. C. Scharber, T. Sekitani, T. Someya, S. Bauer, and N. S. Sariciftci, Nat. Photonics 7, 811 (2013).   DOI
38 C. Wang, D. Hwang, Z. B. Yu, K. Takei, J. Park, T. Chen, B. W. Ma, and A. Javey, Nat. Mater. 12, 899 (2013).   DOI
39 N. Kim, J. Lee, H. An, C. Pang, S.M. Cho, and H. Chae, J. Mater. Chem. C 2, 9800 (2014).   DOI