• 제목/요약/키워드: Emerging Free Technology

검색결과 34건 처리시간 0.032초

FCP 생산을 위한 Rod Type Mold 개선연구 (Improvement of Rod Type Mold in the Production of Freeform Concrete Panel)

  • 팔리케 슈레더;이동훈;임지영;김선국
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2015년도 추계 학술논문 발표대회
    • /
    • pp.181-182
    • /
    • 2015
  • The production technologies of free-form concrete panels are emerging to satisfy the need of modern complex shaped in architectural design. This study aims for introducing and improvising the innovative technique called Rod type mold that overcomes the difficulties in some extent by enabling the mold to be used many times, making the shape of the mold adjustable in a flexible way and describing its production process to provide the alternative solution for the construction of free-form mold with considering the features including reusability and optimization cost across its production process. In this study, the freeform concrete panel shape was designed and experiment was done using computerized numeric control machine and rod type mold. The problems appeared on achieving desired shape while operating on rod type mold. The process of identifying all the root causes and contributing causes that may have generated an undesirable condition were done. Consequently, the conical or semicircular shaped was proposed for the end of Numerical control rod and replaced it with the existing flat shaped end to avoid the detachable problem and to improve rod type mold performance.

  • PDF

무배터리 무선 센서 네트워크에서의 데이터 집적 스케줄링에 관한 새로운 라우팅 구조 방법 (A Novel Routing Structure Method For Data Aggregation Scheduling in Battery-Free Wireless Sensor Networks)

  • ;김문성;추현승
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 춘계학술발표대회
    • /
    • pp.94-97
    • /
    • 2022
  • The emerging energy harvesting technology, which has been successfully integrated into Wireless Sensor Networks, enables sensor batteries to be charged using renewable energy sources. In the meantime, the problem of Minimum Latency Aggregation Scheduling (MLAS) in battery-powered WSNs has been well studied. However, because sensors have limited energy harvesting capabilities, captured energy is limited and varies greatly between nodes. As a result, all previous MLAS algorithms are incompatible with Battery-Free Wireless Sensor Networks (BF-WSNs). We investigate the MLAS problem in BF-WSNs in this paper. To make the best use of the harvested energy, we build an aggregation tree that leverages the energy harvesting rates of the sensor nodes with an intuitive explanation. The aggregation tree, which determines sender-receiver pairs for data transmission, is one of the two important phases to obtain a low data aggregation latency in the BF-WSNs.

Highly Flexible Dye-sensitized Solar Cell Prepared on Single Metal Mesh

  • Yun, Min Ju;Cha, Seung I.;Seo, Seon Hee;Lee, Dong Y.
    • Current Photovoltaic Research
    • /
    • 제2권3호
    • /
    • pp.79-83
    • /
    • 2014
  • Dye-sensitized solar cells (DSSCs) are applied in the emerging fields of building integrated photovoltaic and electronics integrated photovoltaic like small portable power sources as demands are increased with characteristic advantages. Highly flexible dye-sensitized solar cells (DSSCs) prepared on single stainless steel mesh were proposed in this paper. Single mesh DSSCs structure utilizing the spraying the chopped glass paper on the surface treated stainless steel mesh for integrating the space element and the electrode components, counter electrode component and photoelectrode component were coated on each side of the single mesh. The fabricated single mesh DSSCs showed the energy-conversion efficiency 0.50% which show highly bendable ability. The new single mesh DSSCs may have potential applications as highly bendable solar cells to overcome the limitations of TCO-based DSSCs.

Design and transient analysis of a compact and long-term-operable passive residual heat removal system

  • Wooseong Park;Yong Hwan Yoo;Kyung Jun Kang;Yong Hoon Jeong
    • Nuclear Engineering and Technology
    • /
    • 제55권12호
    • /
    • pp.4335-4349
    • /
    • 2023
  • Nuclear marine propulsion has been emerging as a next generation carbon-free power source, for which proper passive residual heat removal systems (PRHRSs) are needed for long-term safety. In particular, the characteristics of unlimited operation time and compact design are crucial in maritime applications due to the difficulties of safety aids and limited space. Accordingly, a compact and long-term-operable PRHRS has been proposed with the key design concept of using both air cooling and seawater cooling in tandem. To confirm its feasibility, this study conducted system design and a transient analysis in an accident scenario. Design results indicate that seawater cooling can considerably reduce the overall system size, and thus the compact and long-term-operable PRHRS can be realized. Regarding the transient analysis, the Multi-dimensional Analysis of Reactor Safety (MARS-KS) code was used to analyze the system behavior under a station blackout condition. Results show that the proposed design can satisfy the design requirements with a sufficient margin: the coolant temperature reached the safe shutdown condition within 36 h, and the maximum cooling rate did not exceed 40 ℃/h. Lastly, it was assessed that both air cooling and seawater cooling are necessary for achieving long-term operation and compact design.

Magnetic Resonance-Guided Focused Ultrasound : Current Status and Future Perspectives in Thermal Ablation and Blood-Brain Barrier Opening

  • Lee, Eun Jung;Fomenko, Anton;Lozano, Andres M.
    • Journal of Korean Neurosurgical Society
    • /
    • 제62권1호
    • /
    • pp.10-26
    • /
    • 2019
  • Magnetic resonance-guided focused ultrasound (MRgFUS) is an emerging new technology with considerable potential to treat various neurological diseases. With refinement of ultrasound transducer technology and integration with magnetic resonance imaging guidance, transcranial sonication of precise cerebral targets has become a therapeutic option. Intensity is a key determinant of ultrasound effects. High-intensity focused ultrasound can produce targeted lesions via thermal ablation of tissue. MRgFUS-mediated stereotactic ablation is non-invasive, incision-free, and confers immediate therapeutic effects. Since the US Food and Drug Administration approval of MRgFUS in 2016 for unilateral thalamotomy in medication-refractory essential tremor, studies on novel indications such as Parkinson's disease, psychiatric disease, and brain tumors are underway. MRgFUS is also used in the context of blood-brain barrier (BBB) opening at low intensities, in combination with intravenously-administered microbubbles. Preclinical studies show that MRgFUS-mediated BBB opening safely enhances the delivery of targeted chemotherapeutic agents to the brain and improves tumor control as well as survival. In addition, BBB opening has been shown to activate the innate immune system in animal models of Alzheimer's disease. Amyloid plaque clearance and promotion of neurogenesis in these studies suggest that MRgFUS-mediated BBB opening may be a new paradigm for neurodegenerative disease treatment in the future. Here, we review the current status of preclinical and clinical trials of MRgFUS-mediated thermal ablation and BBB opening, described their mechanisms of action, and discuss future prospects.

Engineering properties of expansive soil treated with polypropylene fibers

  • Ali, Muhammad;Aziz, Mubashir;Hamza, Muhammad;Madni, Muhammad Faizan
    • Geomechanics and Engineering
    • /
    • 제22권3호
    • /
    • pp.227-236
    • /
    • 2020
  • Expansive soils are renowned for their swelling-shrinkage property and these volumetric changes resultantly cause huge damage to civil infrastructures. Likewise, subgrades consisting of expansive soils instigate serviceability failures in pavements across various regions of Pakistan and worldwide. This study presents the use of polypropylene fibers to improve the engineering properties of a local swelling soil. The moisture-density relationship, unconfined compressive strength (UCS) and elastic modulus (E50), California bearing ratio (CBR) and one-dimensional consolidation behavior of the soil treated with 0, 0.2, 0.4, 0.6 and 0.8% fibers have been investigated in this study. It is found that the maximum dry density of reinforced soil slightly decreased by 2.8% due to replacement of heavier soil particles by light-weight fibers and the optimum moisture content remained almost unaffected due to non-absorbent nature of the fibers. A significant improvement has been observed in UCS (an increase of 279%), E50 (an increase of 113.6%) and CBR value (an increase of 94.4% under unsoaked and an increase of 55.6% under soaked conditions) of the soil reinforced with 0.4% fibers, thereby providing a better quality subgrade for the construction of pavements on such soils. Free swell and swell pressure of the soil also significantly reduced (94.4% and 87.9%, respectively) with the addition of 0.8% fibers and eventually converting the medium swelling soil to a low swelling class. Similarly, the compression and rebound indices also reduced by 69.9% and 88%, respectively with fiber inclusion of 0.8%. From the experimental evaluations, it emerges that polypropylene fiber has great potential as a low cost and sustainable stabilizing material for widespread swelling soils.

학술정보 유통위기 및 해소전략의 해부 (Analysis of Crisis and Alternative in Scholarly Information Communication)

  • 윤희윤
    • 정보관리연구
    • /
    • 제36권1호
    • /
    • pp.1-32
    • /
    • 2005
  • 현재의 학술 커뮤니케이션 위기는 잡지의 위기가 아니라 정보 유통상의 광범위한 위기이다. 그것은 STM 학술지의 구독비용이 대학도서관의 예산 증가율을 상회함에 따라 학술 및 연구자료의 접근력이 축소되거나 상실되는 것을 의미한다. 그래서 오픈 액세스 잡지(OAJ), 저자 셀프 아카이빙(ASA), 학술기관 레포지터리(AIR)를 전략적 수단으로 하는 오픈 액세스가 대안으로 등장하였다. 이에 본 연구는 오픈 액세스의 최근 동향을 개관하고, OA 전략에 내재된 장애요소와 다양한 현안인 학술정보의 공공재 논쟁, 무료접근의 신화와 한계, 저자의 비용지불 모델, 저작권 귀속문제 등을 분석한다.

Extraction of the mode shapes of a segmented ship model with a hydroelastic response

  • Kim, Yooil;Ahn, In-Gyu;Park, Sung-Gun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권6호
    • /
    • pp.979-994
    • /
    • 2015
  • The mode shapes of a segmented hull model towed in a model basin were predicted using both the Proper Orthogonal Decomposition (POD) and cross random decrement technique. The proper orthogonal decomposition, which is also known as Karhunen-Loeve decomposition, is an emerging technology as a useful signal processing technique in structural dynamics. The technique is based on the fact that the eigenvectors of a spatial coherence matrix become the mode shapes of the system under free and randomly excited forced vibration conditions. Taking advantage of the simplicity of POD, efforts have been made to reveal the mode shapes of vibrating flexible hull under random wave excitation. First, the segmented hull model of a 400 K ore carrier with 3 flexible connections was towed in a model basin under different sea states and the time histories of the vertical bending moment at three different locations were measured. The measured response time histories were processed using the proper orthogonal decomposition, eventually to obtain both the first and second vertical vibration modes of the flexible hull. A comparison of the obtained mode shapes with those obtained using the cross random decrement technique showed excellent correspondence between the two results.

Noncontact strain sensing in cement-based material using laser-induced fluorescence from nanotube-based skin

  • Meng, Wei;Bachilo, Sergei M.;Parol, Jafarali;Weisman, R. Bruce;Nagarajaiah, Satish
    • Structural Monitoring and Maintenance
    • /
    • 제9권3호
    • /
    • pp.259-270
    • /
    • 2022
  • This study explores the use of the recently developed "strain-sensing smart skin" (S4) method for noncontact strain measurements on cement-based samples. S4 sensors are single-wall carbon nanotubes dilutely embedded in thin polymer films. Strains transmitted to the nanotubes cause systematic shifts in their near-infrared fluorescence spectra, which are analyzed to deduce local strain values. It is found that with cement-based materials, this method is hampered by spectral interference from structured near-infrared cement luminescence. However, application of an opaque blocking layer between the specimen surface and the nanotube sensing film enables interference-free strain measurements. Tests were performed on cement, mortar, and concrete specimens with such modified S4 coatings. When specimens were subjected to uniaxial compressive stress, the spectral peak separations varied linearly and predictably with induced strain. These results demonstrate that S4 is a promising emerging technology for measuring strains down to ca. 30 𝜇𝜀 in concrete structures.

HMD를 이용한 증강현실 큐브 맞추기 안내 시스템의 사용자 경험 평가 (User Experience Evaluation of Augmented Reality based Guidance Systems for Solving Rubik's Cube using HMD)

  • 박재범;박창훈
    • 예술인문사회 융합 멀티미디어 논문지
    • /
    • 제7권7호
    • /
    • pp.935-944
    • /
    • 2017
  • 최근 증강현실 기술이 발전하여 실생활에서도 다양한 증강현실 콘텐츠를 접할 수 있게 되었다. 특히 모바일 기기의 성능이 향상되어 특별한 추가 장치가 없어도 증강현실 기술을 사용할 수 있게 되었다. 이로 인해 게임 뿐만 아니라 훈련 및 안내 시스템, 박물관의 작품 안내 시스템 등의 분야에서 증강현실에 대한 관심 역시 높아지고 있다. 하지만 기존의 단일 모바일 기기를 이용한 안내 시스템들은 기기의 카메라로 시야가 제한되거나 두 손이 자유롭지 못해 사용자 입력이 어려운 등 사용자 경험(UX)의 측면에서 제약이 존재한다. 본 논문은 단일 모바일 기기의 사용자 경험의 제약을 개선하기 위해 태블릿과 HMD를 이용한 증강현실 큐브 맞추기 안내 시스템을 비교한다. 그리고 HMD를 이용한 증강현실 큐브 맞추기 안내 시스템에서 사용자 경험을 긍정적으로 개선한 요소를 제시하고, 실제로 이러한 요소들을 적용한 시스템을 사용하였을 때 사용자들이 더욱 편하게 느끼는지 알아보기 위하여 사용자 경험에 대한 비교 실험 평가 및 설문 조사를 실시한다.